tejp commited on
Commit
79ce837
1 Parent(s): 0340dad

tejp/custom_dataset_augmented

Browse files
Files changed (5) hide show
  1. README.md +26 -2
  2. all_results.json +11 -11
  3. eval_results.json +6 -6
  4. train_results.json +5 -5
  5. trainer_state.json +9 -9
README.md CHANGED
@@ -2,12 +2,32 @@
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
 
 
8
  model-index:
9
  - name: fine-tuned-augmented
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,7 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # fine-tuned-augmented
17
 
18
- This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
 
 
 
 
19
 
20
  ## Model description
21
 
 
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224
4
  tags:
5
+ - image-classification
6
  - generated_from_trainer
7
  datasets:
8
  - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
  model-index:
13
  - name: fine-tuned-augmented
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: custom_dataset_augmented
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.4672131147540984
28
+ - name: F1
29
+ type: f1
30
+ value: 0.08120213120213123
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # fine-tuned-augmented
37
 
38
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the custom_dataset_augmented dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 1.5780
41
+ - Accuracy: 0.4672
42
+ - F1: 0.0812
43
 
44
  ## Model description
45
 
all_results.json CHANGED
@@ -1,14 +1,14 @@
1
  {
2
  "epoch": 3.0,
3
- "eval_accuracy": 0.7692307692307693,
4
- "eval_f1": 0.6336996336996338,
5
- "eval_loss": 1.3636784553527832,
6
- "eval_runtime": 42.9996,
7
- "eval_samples_per_second": 0.302,
8
- "eval_steps_per_second": 0.047,
9
- "total_flos": 3022323029526528.0,
10
- "train_loss": 1.8923139572143555,
11
- "train_runtime": 145.5181,
12
- "train_samples_per_second": 0.268,
13
- "train_steps_per_second": 0.021
14
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "eval_accuracy": 0.4672131147540984,
4
+ "eval_f1": 0.08120213120213123,
5
+ "eval_loss": 1.5779949426651,
6
+ "eval_runtime": 465.1675,
7
+ "eval_samples_per_second": 0.262,
8
+ "eval_steps_per_second": 0.034,
9
+ "total_flos": 2.8365118601895936e+16,
10
+ "train_loss": 1.9596904118855794,
11
+ "train_runtime": 1931.2052,
12
+ "train_samples_per_second": 0.19,
13
+ "train_steps_per_second": 0.006
14
  }
eval_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "epoch": 3.0,
3
- "eval_accuracy": 0.7692307692307693,
4
- "eval_f1": 0.6336996336996338,
5
- "eval_loss": 1.3636784553527832,
6
- "eval_runtime": 42.9996,
7
- "eval_samples_per_second": 0.302,
8
- "eval_steps_per_second": 0.047
9
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "eval_accuracy": 0.4672131147540984,
4
+ "eval_f1": 0.08120213120213123,
5
+ "eval_loss": 1.5779949426651,
6
+ "eval_runtime": 465.1675,
7
+ "eval_samples_per_second": 0.262,
8
+ "eval_steps_per_second": 0.034
9
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 3.0,
3
- "total_flos": 3022323029526528.0,
4
- "train_loss": 1.8923139572143555,
5
- "train_runtime": 145.5181,
6
- "train_samples_per_second": 0.268,
7
- "train_steps_per_second": 0.021
8
  }
 
1
  {
2
  "epoch": 3.0,
3
+ "total_flos": 2.8365118601895936e+16,
4
+ "train_loss": 1.9596904118855794,
5
+ "train_runtime": 1931.2052,
6
+ "train_samples_per_second": 0.19,
7
+ "train_steps_per_second": 0.006
8
  }
trainer_state.json CHANGED
@@ -3,26 +3,26 @@
3
  "best_model_checkpoint": null,
4
  "epoch": 3.0,
5
  "eval_steps": 1000,
6
- "global_step": 3,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "epoch": 3.0,
13
- "step": 3,
14
- "total_flos": 3022323029526528.0,
15
- "train_loss": 1.8923139572143555,
16
- "train_runtime": 145.5181,
17
- "train_samples_per_second": 0.268,
18
- "train_steps_per_second": 0.021
19
  }
20
  ],
21
  "logging_steps": 1000,
22
- "max_steps": 3,
23
  "num_train_epochs": 3,
24
  "save_steps": 1000,
25
- "total_flos": 3022323029526528.0,
26
  "trial_name": null,
27
  "trial_params": null
28
  }
 
3
  "best_model_checkpoint": null,
4
  "epoch": 3.0,
5
  "eval_steps": 1000,
6
+ "global_step": 12,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
  "epoch": 3.0,
13
+ "step": 12,
14
+ "total_flos": 2.8365118601895936e+16,
15
+ "train_loss": 1.9596904118855794,
16
+ "train_runtime": 1931.2052,
17
+ "train_samples_per_second": 0.19,
18
+ "train_steps_per_second": 0.006
19
  }
20
  ],
21
  "logging_steps": 1000,
22
+ "max_steps": 12,
23
  "num_train_epochs": 3,
24
  "save_steps": 1000,
25
+ "total_flos": 2.8365118601895936e+16,
26
  "trial_name": null,
27
  "trial_params": null
28
  }