tejp/custom_dataset_augmented
Browse files- README.md +26 -2
- all_results.json +11 -11
- eval_results.json +6 -6
- train_results.json +5 -5
- trainer_state.json +9 -9
README.md
CHANGED
@@ -2,12 +2,32 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/vit-base-patch16-224
|
4 |
tags:
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- imagefolder
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: fine-tuned-augmented
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -15,7 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# fine-tuned-augmented
|
17 |
|
18 |
-
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: google/vit-base-patch16-224
|
4 |
tags:
|
5 |
+
- image-classification
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
model-index:
|
13 |
- name: fine-tuned-augmented
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: custom_dataset_augmented
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.4672131147540984
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.08120213120213123
|
31 |
---
|
32 |
|
33 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
35 |
|
36 |
# fine-tuned-augmented
|
37 |
|
38 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the custom_dataset_augmented dataset.
|
39 |
+
It achieves the following results on the evaluation set:
|
40 |
+
- Loss: 1.5780
|
41 |
+
- Accuracy: 0.4672
|
42 |
+
- F1: 0.0812
|
43 |
|
44 |
## Model description
|
45 |
|
all_results.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 1.
|
6 |
-
"eval_runtime":
|
7 |
-
"eval_samples_per_second": 0.
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
-
"total_flos":
|
10 |
-
"train_loss": 1.
|
11 |
-
"train_runtime":
|
12 |
-
"train_samples_per_second": 0.
|
13 |
-
"train_steps_per_second": 0.
|
14 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.4672131147540984,
|
4 |
+
"eval_f1": 0.08120213120213123,
|
5 |
+
"eval_loss": 1.5779949426651,
|
6 |
+
"eval_runtime": 465.1675,
|
7 |
+
"eval_samples_per_second": 0.262,
|
8 |
+
"eval_steps_per_second": 0.034,
|
9 |
+
"total_flos": 2.8365118601895936e+16,
|
10 |
+
"train_loss": 1.9596904118855794,
|
11 |
+
"train_runtime": 1931.2052,
|
12 |
+
"train_samples_per_second": 0.19,
|
13 |
+
"train_steps_per_second": 0.006
|
14 |
}
|
eval_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 1.
|
6 |
-
"eval_runtime":
|
7 |
-
"eval_samples_per_second": 0.
|
8 |
-
"eval_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.4672131147540984,
|
4 |
+
"eval_f1": 0.08120213120213123,
|
5 |
+
"eval_loss": 1.5779949426651,
|
6 |
+
"eval_runtime": 465.1675,
|
7 |
+
"eval_samples_per_second": 0.262,
|
8 |
+
"eval_steps_per_second": 0.034
|
9 |
}
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 1.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second": 0.
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"total_flos": 2.8365118601895936e+16,
|
4 |
+
"train_loss": 1.9596904118855794,
|
5 |
+
"train_runtime": 1931.2052,
|
6 |
+
"train_samples_per_second": 0.19,
|
7 |
+
"train_steps_per_second": 0.006
|
8 |
}
|
trainer_state.json
CHANGED
@@ -3,26 +3,26 @@
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 1000,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 3.0,
|
13 |
-
"step":
|
14 |
-
"total_flos":
|
15 |
-
"train_loss": 1.
|
16 |
-
"train_runtime":
|
17 |
-
"train_samples_per_second": 0.
|
18 |
-
"train_steps_per_second": 0.
|
19 |
}
|
20 |
],
|
21 |
"logging_steps": 1000,
|
22 |
-
"max_steps":
|
23 |
"num_train_epochs": 3,
|
24 |
"save_steps": 1000,
|
25 |
-
"total_flos":
|
26 |
"trial_name": null,
|
27 |
"trial_params": null
|
28 |
}
|
|
|
3 |
"best_model_checkpoint": null,
|
4 |
"epoch": 3.0,
|
5 |
"eval_steps": 1000,
|
6 |
+
"global_step": 12,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 3.0,
|
13 |
+
"step": 12,
|
14 |
+
"total_flos": 2.8365118601895936e+16,
|
15 |
+
"train_loss": 1.9596904118855794,
|
16 |
+
"train_runtime": 1931.2052,
|
17 |
+
"train_samples_per_second": 0.19,
|
18 |
+
"train_steps_per_second": 0.006
|
19 |
}
|
20 |
],
|
21 |
"logging_steps": 1000,
|
22 |
+
"max_steps": 12,
|
23 |
"num_train_epochs": 3,
|
24 |
"save_steps": 1000,
|
25 |
+
"total_flos": 2.8365118601895936e+16,
|
26 |
"trial_name": null,
|
27 |
"trial_params": null
|
28 |
}
|