File size: 7,533 Bytes
5683186 3d6dd25 fbe2e0d f09d0fe 5683186 3d6dd25 5683186 3d6dd25 5683186 3d6dd25 5683186 e0ce18c 5683186 3d6dd25 5683186 3d6dd25 5683186 3d6dd25 5683186 3d6dd25 e3fe64b ff3a507 3d6dd25 5683186 04abfdf bcad6ff 04abfdf bcad6ff 04abfdf bcad6ff c123cca 04abfdf 5683186 dedc88e 5683186 8412b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
base_model: NousResearch/Llama-2-13b-hf
tags:
- llama-2
- instruct
- finetune
- alpaca
- gpt4
- synthetic data
- distillation
datasets:
- teknium/openhermes
model-index:
- name: openhermes-13b
results: []
license: mit
language:
- en
---
# OpenHermes-13B
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ovkrkIIUwJ9azhPtW6dAb.png)
## Model description
OpenHermes 13B is the first fine tune of the Hermes dataset that has a fully open source dataset!
OpenHermes was trained on 242,000 entries of primarily GPT-4 generated data, from open datasets across the AI landscape, including:
- GPTeacher - General Instruct, Roleplay v1, Roleplay v2, and Code Instruct Datasets, by Teknium
- WizardLM (v1, evol_instruct 70k), by WizardLM Team/nlpxucan
- Airoboros GPT-4 (v1.0), by JonDurbin
- Camel-AI's domain expert datasets, by the Camel-AI Team
- CodeAlpaca, by Sahil2801
- GPT4-LLM and Unnatural Instructions, by Microsoft
Filtering included removal of OpenAI refusals, disclaimers, and "As an AI" type examples and more
The base dataset mix the model was trained on is identical to Nous-Hermes', minus the Nous-Instruct and PDACTL datasets which were private datasets.
The WANDB Project is public and can be examined at this link: https://wandb.ai/teknium1/openhermes/runs/openhermes-v2-fullft-13b
Huge thank you to [main_horse](https://twitter.com/main_horse) for compute access and a16z for sponsoring my work, and all the dataset creators and other people who's work has contributed to this project!
## Example Outputs
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/wMSeFqUSBwCNefm7s6G1-.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/00iVenvEOMWIO9X6EY2EZ.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/o7hHbCbtwMLitDy-FWDAg.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-9ZT1FBSE2BJhDowoh6Gj.png)
## Benchmark Information
## Benchmark Results
GPT-4All Benchmark Set
```
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|--------|-----:|---|-----:|
|arc_challenge| 0|acc |0.5009|± |0.0146|
| | |acc_norm|0.5247|± |0.0146|
|arc_easy | 0|acc |0.8127|± |0.0080|
| | |acc_norm|0.7854|± |0.0084|
|boolq | 1|acc |0.8153|± |0.0068|
|hellaswag | 0|acc |0.6126|± |0.0049|
| | |acc_norm|0.7995|± |0.0040|
|openbookqa | 0|acc |0.3660|± |0.0216|
| | |acc_norm|0.4600|± |0.0223|
|piqa | 0|acc |0.7922|± |0.0095|
| | |acc_norm|0.8112|± |0.0091|
|winogrande | 0|acc |0.7293|± |0.0125|
Average: 0.7036
```
AGI-Eval
```
| Task |Version| Metric |Value | |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat | 0|acc |0.2008|± |0.0252|
| | |acc_norm|0.2126|± |0.0257|
|agieval_logiqa_en | 0|acc |0.3410|± |0.0186|
| | |acc_norm|0.3564|± |0.0188|
|agieval_lsat_ar | 0|acc |0.2261|± |0.0276|
| | |acc_norm|0.2174|± |0.0273|
|agieval_lsat_lr | 0|acc |0.3725|± |0.0214|
| | |acc_norm|0.3373|± |0.0210|
|agieval_lsat_rc | 0|acc |0.4684|± |0.0305|
| | |acc_norm|0.4572|± |0.0304|
|agieval_sat_en | 0|acc |0.6553|± |0.0332|
| | |acc_norm|0.5971|± |0.0343|
|agieval_sat_en_without_passage| 0|acc |0.4515|± |0.0348|
| | |acc_norm|0.4029|± |0.0343|
|agieval_sat_math | 0|acc |0.3273|± |0.0317|
| | |acc_norm|0.2636|± |0.0298|
Average: 0.3556
```
BigBench Reasoning Test
```
| Task |Version| Metric |Value | |Stderr|
|------------------------------------------------|------:|---------------------|-----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|0.5368|± |0.0363|
|bigbench_date_understanding | 0|multiple_choice_grade|0.7127|± |0.0236|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
|bigbench_geometric_shapes | 0|multiple_choice_grade|0.1003|± |0.0159|
| | |exact_str_match |0.0000|± |0.0000|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2720|± |0.0199|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1986|± |0.0151|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4500|± |0.0288|
|bigbench_movie_recommendation | 0|multiple_choice_grade|0.2880|± |0.0203|
|bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5390|± |0.0111|
|bigbench_ruin_names | 0|multiple_choice_grade|0.3906|± |0.0231|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.1844|± |0.0123|
|bigbench_snarks | 0|multiple_choice_grade|0.5249|± |0.0372|
|bigbench_sports_understanding | 0|multiple_choice_grade|0.5335|± |0.0159|
|bigbench_temporal_sequences | 0|multiple_choice_grade|0.2980|± |0.0145|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2048|± |0.0114|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1297|± |0.0080|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4500|± |0.0288|
Average: 36.75
```
This is a slight improvement on GPT4ALL Suite and BigBench Suite, with a degredation in AGIEval compared to the original hermes.
Average Score Comparison between Nous-Hermes Llama-2 and OpenHermes Llama-2:
```
| Bench | Nous-Hermes | OpenHermes | Change |
|------------------------------|------------:|------------|--------|
|GPT4All | 70.00| 70.36| +0.36|
|------------------------------------------------------------------|
|BigBench | 36.57| 36.75| +0.18|
|------------------------------------------------------------------|
|AGI Eval | 37.20| 35.56| -1.64|
```
## Training procedure
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/pqQ6MrMVy80hHEKSfqIX2.png)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 3 |