|
|
|
|
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, MistralForCausalLM |
|
import bitsandbytes, flash_attn |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained('teknium/OpenHermes-2.5-Mistral-7B', trust_remote_code=True) |
|
model = MistralForCausalLM.from_pretrained( |
|
"teknium/OpenHermes-2.5-Mistral-7B", |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_8bit=False, |
|
load_in_4bit=True, |
|
use_flash_attention_2=True |
|
) |
|
|
|
prompts = [ |
|
"""<|im_start|>system |
|
You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> |
|
<|im_start|>user |
|
Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> |
|
<|im_start|>assistant""", |
|
] |
|
|
|
for chat in prompts: |
|
print(chat) |
|
input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") |
|
generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) |
|
print(f"Response: {response}") |