import os import math import time import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F from hellaswag import render_example, iterate_examples # -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # From original transformer model gpt2 only have decoder part and also the cross-attention is not used. # Also there's reshuffling layer-norms and Additional Layer normalization is added right before the soft-max layer. class CausalSelfAttention(nn.Module): # this class combined the self-attention mechanism and multi-head attention mechanism in one class def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # n_emb is the embedding size and n_head is the number of heads in the multi-head attention mechanism # (so the embedding size should be divisible by the number of heads) self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd) # Linear layer for the query, key and value projections for all heads, but in batch self.c_proj = nn.Linear(config.n_embd, config.n_embd) # Linear layer for the final output projection self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection # Regularization self.n_head = config.n_head self.n_embd = config.n_embd # self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1,1,config.block_size, config.block_size)) # Lower triangular matrix for masking future tokens def forward(self,x): B, T, C = x.size() # batch size, Sequence length, Embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dimension # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs # eg: in GPT-2 (124M), n_head=12, hs=64, so nh*hs = C = 768 channels in Transformer (channels is also called as hidden size) qkv = self.c_attn(x) # qkv is the query, key and value projections for all heads q,k,v = qkv.split(self.n_embd, dim=2) # Splitting the qkv into query, key and value projections k = k.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs) q = q.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs) v = v.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs) # attention (materializes the large (T,T) matrix for all queries and keys) # att = (q@k.transpose(-2,-1))*(1.0 / math.sqrt(k.size(-1))) # Multiplying the query and key and scaling it by the square root of the key size # att = att.masked_fill(self.bias[:,:,:T,:T]==0, float('-inf')) # Masking the future tokens # att = F.softmax(att, dim=-1) # Softmax over the last dimension # y = att@v # Multiplying the attention weights with the values (B,nh,T,T) x (B,nh,T,hs) = (B,nh,T,hs) # Attention on GPT2: ( matmul + mask + softmax + dropout + matmul ) ==> 15ms # Flash Attention: Fused Kernel ==> 2.5ms y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1,2).contiguous().view(B,T,C) # re-assemble all head outputs side by side # Output Projection y = self.c_proj(y) # Projecting the output to the original size return y class MLP(nn.Module): def __init__(self, config): super().__init__() # Inheriting from the parent class nn.Module self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # Fully connected layer for the first part of the MLP which takes the input and projects it to 4 times the size of the input self.gelu = nn.GELU(approximate='tanh') # GELU activation function self.c_proj = nn.Linear(4*config.n_embd, config.n_embd) # Fully connected layer for the second part of the MLP which projects the output of the previous layer to the original size self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection def forward(self,x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x # Block is basically a transformer block which consists of a self-attention mechanism and a feed-forward neural network (decoder part) class Block(nn.Module): def __init__(self,config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) # Layer normalization before the self-attention self.attn = CausalSelfAttention(config) # Self-attention mechanism self.ln_2 = nn.LayerNorm(config.n_embd) # Layer normalization after the self-attention self.mlp = MLP(config) # Multi-layer perceptron for each position # forward pass of the block, the input x is the sequence of embeddings and return is the updated sequence of embeddings def forward(self,x): x = x + self.attn(self.ln_1(x)) # residual connection followed by self-attention # Our text first goes to ln_1, then to the self-attention mechanism, then to ln_2, and finally to the MLP x = x + self.mlp(self.ln_2(x)) # residual connection followed by MLP (ffn) # In attention 1024 sequence lined up communicated with each other & exchange info. # Whereas MLP happens to every single token individually and there's no communication between tokens or exchange of information between tokens. return x @dataclass class GPTConfig: # block_size: int = 256 # maximum sequence length # vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token # n_layer: int = 12 # number of transformer layers # n_head: int = 12 # number of heads in the multi-head attention mechanism # n_embd: int = 768 # embedding dimension of each token # # changed the default values of the parameters block_size: int = 256 # maximum sequence length vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token n_layer: int = 6 # number of transformer layers n_head: int = 6 # number of heads in the multi-head attention mechanism n_embd: int = 768 # embedding dimension of each token class GPT(nn.Module): # Kind of skeleton of the model def __init__(self,config): super().__init__() self.config = config # transformer is the main container and it have further sub-modules like wte, wpe, h, ln_f self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding weights wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding weights h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformer blocks as a list of n_layer (h is hidden layer) ln_f = nn.LayerNorm(config.n_embd), # final layer normalization before the softmax )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias = False) # language model head is a linear layer with vocab_size output # Weight sharing scheme self.transformer.wte.weight = self.lm_head.weight # weight tying the token embeddings with the pre-softmax linear transformation, using this we saved 40m parameters # init parameters self.apply(self._init_weights) # initializing the weights of the model def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANOGPT_SCALE_INIT'): std *= (2*self.config.n_layer)**-0.5 # scale by the number of layers torch.nn.init.normal_(module.weight, mean=0.0, std = std) # initializing the weights of the linear layer with normal distribution if module.bias is not None: torch.nn.init.zeros_(module.bias) # initializing the bias of the linear layer with zeros elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self,idx, targets= None): # idx is of shape [batch_size, sequence_length] (B,T) B,T = idx.size() # batch size and sequence length assert T<=self.config.block_size ,f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" # forward the token and position embeddings pos = torch.arange(0, T, dtype = torch.long, device =idx.device) # tensor of shape [T] pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd) tok_emb = self.transformer.wte(idx) # token embeddings of shape (B,T,n_embd) x = tok_emb + pos_emb # forward the blocks of the transformer for block in self.transformer.h: x = block(x) # Forward the final layernorm and the classifier x = self.transformer.ln_f(x) logits = self.lm_head(x) # (B,T,vocab_size) loss = None if targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Cross-entropy flattens out the 3D (B,T,vocab_size) tensor to 2D # (B*T,vocab_size) tensor, It also flattens out the target tensor to 1D tensor return logits , loss @classmethod def from_pretrained(cls, model_type): """Load pretrained GPT2 model weights from huggingface""" assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} # Checking if the model type is valid print("Loading weights from pretrained gpt: %s" %model_type) from transformers import GPT2LMHeadModel # n_layer, n_head, and n_embd are determined by the model type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M parameters 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M parameters 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M parameters 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M parameters }[model_type] config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoint # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() # state_dict is the model weights sd_keys = sd.keys() # keys are the names of the weights sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer key, not parameters of the model # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned correctly and matches in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them # missing in sd_keys: lm_head.weight assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model # return the model with the pretrained weights def configure_optimizers(self, weight_decay, learning_rate, device_type): # start with all of the candidate parameters (that require gradients) param_dict = {pn: p for pn, p in self.named_parameters()} # named parameters param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # only parameters that require gradients # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings, all biases and layernorm don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # weight tensors in matmuls + embeddings nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # biases and layernorm optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) if master_process: print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") # Create AdamW optimizer and use the fused version if it is available fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters # check if fused is available in AdamW use_fused = fused_available and device_type == "cuda" if master_process: print(f"using fused AdamW: {use_fused}") optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) return optimizer