metadata
license: apache-2.0
tags:
- merge
- mergekit
- Nexusflow/Starling-LM-7B-beta
- FuseAI/FuseChat-7B-VaRM
- TensorBlock
- GGUF
base_model: Artples/L-MChat-7b
model-index:
- name: L-MChat-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.59
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.44
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.94
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.97
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 24.2
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.93
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.38
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.12
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.54
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Artples/L-MChat-7b
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
Artples/L-MChat-7b - GGUF
This repo contains GGUF format model files for Artples/L-MChat-7b.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<s>GPT4 Correct System: {system_prompt}<|end_of_turn|>GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
L-MChat-7b-Q2_K.gguf | Q2_K | 2.533 GB | smallest, significant quality loss - not recommended for most purposes |
L-MChat-7b-Q3_K_S.gguf | Q3_K_S | 2.947 GB | very small, high quality loss |
L-MChat-7b-Q3_K_M.gguf | Q3_K_M | 3.277 GB | very small, high quality loss |
L-MChat-7b-Q3_K_L.gguf | Q3_K_L | 3.560 GB | small, substantial quality loss |
L-MChat-7b-Q4_0.gguf | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
L-MChat-7b-Q4_K_S.gguf | Q4_K_S | 3.856 GB | small, greater quality loss |
L-MChat-7b-Q4_K_M.gguf | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
L-MChat-7b-Q5_0.gguf | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
L-MChat-7b-Q5_K_S.gguf | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
L-MChat-7b-Q5_K_M.gguf | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
L-MChat-7b-Q6_K.gguf | Q6_K | 5.534 GB | very large, extremely low quality loss |
L-MChat-7b-Q8_0.gguf | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/L-MChat-7b-GGUF --include "L-MChat-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/L-MChat-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'