--- language: - en license: apache-2.0 tags: - text-generation - TensorBlock - GGUF base_model: Felladrin/Llama-160M-Chat-v1 datasets: - ehartford/wizard_vicuna_70k_unfiltered - totally-not-an-llm/EverythingLM-data-V3 - Open-Orca/SlimOrca-Dedup - databricks/databricks-dolly-15k - THUDM/webglm-qa widget: - messages: - role: system content: You are a helpful assistant, who answers with empathy. - role: user content: Got a question for you! - role: assistant content: Sure! What's it? - role: user content: Why do you love cats so much!? 🐈 - messages: - role: system content: You are a helpful assistant who answers user's questions with empathy. - role: user content: Who is Mona Lisa? - messages: - role: system content: You are a helpful assistant who provides concise responses. - role: user content: Heya! - role: assistant content: Hi! How may I help you today? - role: user content: I need to build a simple website. Where should I start learning about web development? - messages: - role: user content: Invited some friends to come home today. Give me some ideas for games to play with them! - messages: - role: system content: You are a helpful assistant who answers user's questions with details and curiosity. - role: user content: What are some potential applications for quantum computing? - messages: - role: system content: You are a helpful assistant who gives creative responses. - role: user content: Write the specs of a game about mages in a fantasy world. - messages: - role: system content: You are a helpful assistant who answers user's questions with details. - role: user content: Tell me about the pros and cons of social media. - messages: - role: system content: You are a helpful assistant who answers user's questions with confidence. - role: user content: What is a dog? - role: assistant content: A dog is a four-legged, domesticated animal that is a member of the class Mammalia, which includes all mammals. Dogs are known for their loyalty, playfulness, and ability to be trained for various tasks. They are also used for hunting, herding, and as service animals. - role: user content: What is the color of an apple? inference: parameters: max_new_tokens: 250 penalty_alpha: 0.5 top_k: 4 repetition_penalty: 1.01 model-index: - name: Llama-160M-Chat-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 24.74 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 35.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.16 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 15.75 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 3.17 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.01 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.17 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.51 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Felladrin/Llama-160M-Chat-v1 name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Felladrin/Llama-160M-Chat-v1 - GGUF This repo contains GGUF format model files for [Felladrin/Llama-160M-Chat-v1](https://huggingface.co/Felladrin/Llama-160M-Chat-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-160M-Chat-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q2_K.gguf) | Q2_K | 0.066 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-160M-Chat-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_S.gguf) | Q3_K_S | 0.075 GB | very small, high quality loss | | [Llama-160M-Chat-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_M.gguf) | Q3_K_M | 0.080 GB | very small, high quality loss | | [Llama-160M-Chat-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q3_K_L.gguf) | Q3_K_L | 0.085 GB | small, substantial quality loss | | [Llama-160M-Chat-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_0.gguf) | Q4_0 | 0.092 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-160M-Chat-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_K_S.gguf) | Q4_K_S | 0.092 GB | small, greater quality loss | | [Llama-160M-Chat-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q4_K_M.gguf) | Q4_K_M | 0.096 GB | medium, balanced quality - recommended | | [Llama-160M-Chat-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_0.gguf) | Q5_0 | 0.108 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-160M-Chat-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_K_S.gguf) | Q5_K_S | 0.108 GB | large, low quality loss - recommended | | [Llama-160M-Chat-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q5_K_M.gguf) | Q5_K_M | 0.110 GB | large, very low quality loss - recommended | | [Llama-160M-Chat-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q6_K.gguf) | Q6_K | 0.125 GB | very large, extremely low quality loss | | [Llama-160M-Chat-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-160M-Chat-v1-GGUF/blob/main/Llama-160M-Chat-v1-Q8_0.gguf) | Q8_0 | 0.161 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --include "Llama-160M-Chat-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-160M-Chat-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```