---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- TensorBlock
- GGUF
base_model: ibm/PowerLM-3b
model-index:
- name: ibm/PowerLM-3b
results:
- task:
type: text-generation
dataset:
name: ARC
type: lm-eval-harness
metrics:
- type: accuracy-norm
value: 60.5
name: accuracy-norm
verified: false
- type: accuracy
value: 72.0
name: accuracy
verified: false
- type: accuracy-norm
value: 74.6
name: accuracy-norm
verified: false
- type: accuracy-norm
value: 43.6
name: accuracy-norm
verified: false
- type: accuracy-norm
value: 79.9
name: accuracy-norm
verified: false
- type: accuracy-norm
value: 70.0
name: accuracy-norm
verified: false
- type: accuracy
value: 49.2
name: accuracy
verified: false
- type: accuracy
value: 34.9
name: accuracy
verified: false
- type: accuracy
value: 15.2
name: accuracy
verified: false
- task:
type: text-generation
dataset:
name: humaneval
type: bigcode-eval
metrics:
- type: pass@1
value: 26.8
name: pass@1
verified: false
- type: pass@1
value: 33.6
name: pass@1
verified: false
---
## ibm/PowerLM-3b - GGUF
This repo contains GGUF format model files for [ibm/PowerLM-3b](https://huggingface.co/ibm/PowerLM-3b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [PowerLM-3b-Q2_K.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q2_K.gguf) | Q2_K | 1.252 GB | smallest, significant quality loss - not recommended for most purposes |
| [PowerLM-3b-Q3_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_S.gguf) | Q3_K_S | 1.453 GB | very small, high quality loss |
| [PowerLM-3b-Q3_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_M.gguf) | Q3_K_M | 1.617 GB | very small, high quality loss |
| [PowerLM-3b-Q3_K_L.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_L.gguf) | Q3_K_L | 1.759 GB | small, substantial quality loss |
| [PowerLM-3b-Q4_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_0.gguf) | Q4_0 | 1.873 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [PowerLM-3b-Q4_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_K_S.gguf) | Q4_K_S | 1.888 GB | small, greater quality loss |
| [PowerLM-3b-Q4_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_K_M.gguf) | Q4_K_M | 2.001 GB | medium, balanced quality - recommended |
| [PowerLM-3b-Q5_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_0.gguf) | Q5_0 | 2.269 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [PowerLM-3b-Q5_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_K_S.gguf) | Q5_K_S | 2.269 GB | large, low quality loss - recommended |
| [PowerLM-3b-Q5_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_K_M.gguf) | Q5_K_M | 2.334 GB | large, very low quality loss - recommended |
| [PowerLM-3b-Q6_K.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q6_K.gguf) | Q6_K | 2.689 GB | very large, extremely low quality loss |
| [PowerLM-3b-Q8_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q8_0.gguf) | Q8_0 | 3.481 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/PowerLM-3b-GGUF --include "PowerLM-3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/PowerLM-3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```