--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - TensorBlock - GGUF base_model: ibm/PowerLM-3b model-index: - name: ibm/PowerLM-3b results: - task: type: text-generation dataset: name: ARC type: lm-eval-harness metrics: - type: accuracy-norm value: 60.5 name: accuracy-norm verified: false - type: accuracy value: 72.0 name: accuracy verified: false - type: accuracy-norm value: 74.6 name: accuracy-norm verified: false - type: accuracy-norm value: 43.6 name: accuracy-norm verified: false - type: accuracy-norm value: 79.9 name: accuracy-norm verified: false - type: accuracy-norm value: 70.0 name: accuracy-norm verified: false - type: accuracy value: 49.2 name: accuracy verified: false - type: accuracy value: 34.9 name: accuracy verified: false - type: accuracy value: 15.2 name: accuracy verified: false - task: type: text-generation dataset: name: humaneval type: bigcode-eval metrics: - type: pass@1 value: 26.8 name: pass@1 verified: false - type: pass@1 value: 33.6 name: pass@1 verified: false ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## ibm/PowerLM-3b - GGUF This repo contains GGUF format model files for [ibm/PowerLM-3b](https://huggingface.co/ibm/PowerLM-3b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [PowerLM-3b-Q2_K.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q2_K.gguf) | Q2_K | 1.252 GB | smallest, significant quality loss - not recommended for most purposes | | [PowerLM-3b-Q3_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_S.gguf) | Q3_K_S | 1.453 GB | very small, high quality loss | | [PowerLM-3b-Q3_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_M.gguf) | Q3_K_M | 1.617 GB | very small, high quality loss | | [PowerLM-3b-Q3_K_L.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q3_K_L.gguf) | Q3_K_L | 1.759 GB | small, substantial quality loss | | [PowerLM-3b-Q4_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_0.gguf) | Q4_0 | 1.873 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [PowerLM-3b-Q4_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_K_S.gguf) | Q4_K_S | 1.888 GB | small, greater quality loss | | [PowerLM-3b-Q4_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q4_K_M.gguf) | Q4_K_M | 2.001 GB | medium, balanced quality - recommended | | [PowerLM-3b-Q5_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_0.gguf) | Q5_0 | 2.269 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [PowerLM-3b-Q5_K_S.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_K_S.gguf) | Q5_K_S | 2.269 GB | large, low quality loss - recommended | | [PowerLM-3b-Q5_K_M.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q5_K_M.gguf) | Q5_K_M | 2.334 GB | large, very low quality loss - recommended | | [PowerLM-3b-Q6_K.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q6_K.gguf) | Q6_K | 2.689 GB | very large, extremely low quality loss | | [PowerLM-3b-Q8_0.gguf](https://huggingface.co/tensorblock/PowerLM-3b-GGUF/blob/main/PowerLM-3b-Q8_0.gguf) | Q8_0 | 3.481 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/PowerLM-3b-GGUF --include "PowerLM-3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/PowerLM-3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```