--- language: - en license: cc-by-nc-sa-4.0 datasets: - Intel/orca_dpo_pairs - argilla/distilabel-math-preference-dpo - kyujinpy/orca_math_dpo pipeline_tag: text-generation base_model: kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 tags: - TensorBlock - GGUF model-index: - name: Sakura-SOLRCA-Math-Instruct-DPO-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.25 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 72.12 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1 - GGUF This repo contains GGUF format model files for [kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1](https://huggingface.co/kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ### System: {system_prompt} ### User: {prompt} ### Assistant: ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q2_K.gguf) | Q2_K | 3.728 GB | smallest, significant quality loss - not recommended for most purposes | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_S.gguf) | Q3_K_S | 4.344 GB | very small, high quality loss | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_M.gguf) | Q3_K_M | 4.839 GB | very small, high quality loss | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q3_K_L.gguf) | Q3_K_L | 5.263 GB | small, substantial quality loss | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_0.gguf) | Q4_0 | 5.655 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_K_S.gguf) | Q4_K_S | 5.698 GB | small, greater quality loss | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q4_K_M.gguf) | Q4_K_M | 6.018 GB | medium, balanced quality - recommended | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_0.gguf) | Q5_0 | 6.889 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_K_S.gguf) | Q5_K_S | 6.889 GB | large, low quality loss - recommended | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q5_K_M.gguf) | Q5_K_M | 7.076 GB | large, very low quality loss - recommended | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q6_K.gguf) | Q6_K | 8.200 GB | very large, extremely low quality loss | | [Sakura-SOLRCA-Math-Instruct-DPO-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF/tree/main/Sakura-SOLRCA-Math-Instruct-DPO-v1-Q8_0.gguf) | Q8_0 | 10.621 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF --include "Sakura-SOLRCA-Math-Instruct-DPO-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Sakura-SOLRCA-Math-Instruct-DPO-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```