gemma-2-9b-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
04680d0 verified
|
raw
history blame
4.07 kB
metadata
language:
  - en
library_name: transformers
license: gemma
tags:
  - unsloth
  - transformers
  - gemma2
  - gemma
  - TensorBlock
  - GGUF
base_model: unsloth/gemma-2-9b
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

unsloth/gemma-2-9b - GGUF

This repo contains GGUF format model files for unsloth/gemma-2-9b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
gemma-2-9b-Q2_K.gguf Q2_K 3.544 GB smallest, significant quality loss - not recommended for most purposes
gemma-2-9b-Q3_K_S.gguf Q3_K_S 4.040 GB very small, high quality loss
gemma-2-9b-Q3_K_M.gguf Q3_K_M 4.435 GB very small, high quality loss
gemma-2-9b-Q3_K_L.gguf Q3_K_L 4.780 GB small, substantial quality loss
gemma-2-9b-Q4_0.gguf Q4_0 5.069 GB legacy; small, very high quality loss - prefer using Q3_K_M
gemma-2-9b-Q4_K_S.gguf Q4_K_S 5.103 GB small, greater quality loss
gemma-2-9b-Q4_K_M.gguf Q4_K_M 5.365 GB medium, balanced quality - recommended
gemma-2-9b-Q5_0.gguf Q5_0 6.038 GB legacy; medium, balanced quality - prefer using Q4_K_M
gemma-2-9b-Q5_K_S.gguf Q5_K_S 6.038 GB large, low quality loss - recommended
gemma-2-9b-Q5_K_M.gguf Q5_K_M 6.191 GB large, very low quality loss - recommended
gemma-2-9b-Q6_K.gguf Q6_K 7.068 GB very large, extremely low quality loss
gemma-2-9b-Q8_0.gguf Q8_0 9.152 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gemma-2-9b-GGUF --include "gemma-2-9b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gemma-2-9b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'