File size: 4,682 Bytes
3c05153 65c9e2d 3c05153 65c9e2d 3c05153 65c9e2d 3c05153 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
datasets:
- vicgalle/alpaca-gpt4
language:
- en
tags:
- instruction-tuning
- alpaca
- gpt4
- TensorBlock
- GGUF
base_model: vicgalle/gpt2-alpaca-gpt4
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## vicgalle/gpt2-alpaca-gpt4 - GGUF
This repo contains GGUF format model files for [vicgalle/gpt2-alpaca-gpt4](https://huggingface.co/vicgalle/gpt2-alpaca-gpt4).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [gpt2-alpaca-gpt4-Q2_K.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q2_K.gguf) | Q2_K | 0.076 GB | smallest, significant quality loss - not recommended for most purposes |
| [gpt2-alpaca-gpt4-Q3_K_S.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q3_K_S.gguf) | Q3_K_S | 0.084 GB | very small, high quality loss |
| [gpt2-alpaca-gpt4-Q3_K_M.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q3_K_M.gguf) | Q3_K_M | 0.091 GB | very small, high quality loss |
| [gpt2-alpaca-gpt4-Q3_K_L.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q3_K_L.gguf) | Q3_K_L | 0.095 GB | small, substantial quality loss |
| [gpt2-alpaca-gpt4-Q4_0.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q4_0.gguf) | Q4_0 | 0.099 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [gpt2-alpaca-gpt4-Q4_K_S.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q4_K_S.gguf) | Q4_K_S | 0.100 GB | small, greater quality loss |
| [gpt2-alpaca-gpt4-Q4_K_M.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q4_K_M.gguf) | Q4_K_M | 0.105 GB | medium, balanced quality - recommended |
| [gpt2-alpaca-gpt4-Q5_0.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q5_0.gguf) | Q5_0 | 0.114 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [gpt2-alpaca-gpt4-Q5_K_S.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q5_K_S.gguf) | Q5_K_S | 0.114 GB | large, low quality loss - recommended |
| [gpt2-alpaca-gpt4-Q5_K_M.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q5_K_M.gguf) | Q5_K_M | 0.118 GB | large, very low quality loss - recommended |
| [gpt2-alpaca-gpt4-Q6_K.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q6_K.gguf) | Q6_K | 0.129 GB | very large, extremely low quality loss |
| [gpt2-alpaca-gpt4-Q8_0.gguf](https://huggingface.co/tensorblock/gpt2-alpaca-gpt4-GGUF/blob/main/gpt2-alpaca-gpt4-Q8_0.gguf) | Q8_0 | 0.165 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/gpt2-alpaca-gpt4-GGUF --include "gpt2-alpaca-gpt4-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/gpt2-alpaca-gpt4-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|