morriszms commited on
Commit
140007a
1 Parent(s): ac5ea0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -12
README.md CHANGED
@@ -160,8 +160,16 @@ This repo contains GGUF format model files for [argilla/notus-7b-v1](https://hug
160
 
161
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
162
 
 
 
 
 
 
 
 
163
  ## Prompt template
164
 
 
165
  ```
166
  <|system|>
167
  {system_prompt}</s>
@@ -174,18 +182,18 @@ The files were quantized using machines provided by [TensorBlock](https://tensor
174
 
175
  | Filename | Quant type | File Size | Description |
176
  | -------- | ---------- | --------- | ----------- |
177
- | [notus-7b-v1-Q2_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
178
- | [notus-7b-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
179
- | [notus-7b-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
180
- | [notus-7b-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
181
- | [notus-7b-v1-Q4_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
182
- | [notus-7b-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
183
- | [notus-7b-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
184
- | [notus-7b-v1-Q5_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
185
- | [notus-7b-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
186
- | [notus-7b-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
187
- | [notus-7b-v1-Q6_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
188
- | [notus-7b-v1-Q8_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/tree/main/notus-7b-v1-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
189
 
190
 
191
  ## Downloading instruction
 
160
 
161
  The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
162
 
163
+
164
+ <div style="text-align: left; margin: 20px 0;">
165
+ <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
166
+ Run them on the TensorBlock client using your local machine ↗
167
+ </a>
168
+ </div>
169
+
170
  ## Prompt template
171
 
172
+
173
  ```
174
  <|system|>
175
  {system_prompt}</s>
 
182
 
183
  | Filename | Quant type | File Size | Description |
184
  | -------- | ---------- | --------- | ----------- |
185
+ | [notus-7b-v1-Q2_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes |
186
+ | [notus-7b-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss |
187
+ | [notus-7b-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss |
188
+ | [notus-7b-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss |
189
+ | [notus-7b-v1-Q4_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
190
+ | [notus-7b-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss |
191
+ | [notus-7b-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended |
192
+ | [notus-7b-v1-Q5_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
193
+ | [notus-7b-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended |
194
+ | [notus-7b-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended |
195
+ | [notus-7b-v1-Q6_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss |
196
+ | [notus-7b-v1-Q8_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended |
197
 
198
 
199
  ## Downloading instruction