--- datasets: - argilla/ultrafeedback-binarized-preferences language: - en base_model: argilla/notus-7b-v1 library_name: transformers pipeline_tag: text-generation tags: - dpo - rlaif - preference - ultrafeedback - TensorBlock - GGUF license: mit model-index: - name: notus-7b-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 0.6459044368600683 name: normalized accuracy source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 0.8478390758812986 name: normalized accuracy source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 0.5436768358952805 source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 0.6303308230938872 name: accuracy source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.1516300227445034 name: accuracy source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 0.7940015785319653 name: accuracy source: url: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/argilla/notus-7b-v1/results_2023-11-29T22-16-51.521321.json name: Open LLM Leaderboard Results - task: type: text-generation name: Text Generation dataset: name: AlpacaEval type: tatsu-lab/alpaca_eval metrics: - type: tatsu-lab/alpaca_eval value: 0.9142 name: win rate source: url: https://tatsu-lab.github.io/alpaca_eval/ - task: type: text-generation name: Text Generation dataset: name: MT-Bench type: unknown metrics: - type: unknown value: 7.3 name: score source: url: https://huggingface.co/spaces/lmsys/mt-bench ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## argilla/notus-7b-v1 - GGUF This repo contains GGUF format model files for [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|system|> {system_prompt} <|user|> {prompt} <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [notus-7b-v1-Q2_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q2_K.gguf) | Q2_K | 2.532 GB | smallest, significant quality loss - not recommended for most purposes | | [notus-7b-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_S.gguf) | Q3_K_S | 2.947 GB | very small, high quality loss | | [notus-7b-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_M.gguf) | Q3_K_M | 3.277 GB | very small, high quality loss | | [notus-7b-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q3_K_L.gguf) | Q3_K_L | 3.560 GB | small, substantial quality loss | | [notus-7b-v1-Q4_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_0.gguf) | Q4_0 | 3.827 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [notus-7b-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_K_S.gguf) | Q4_K_S | 3.856 GB | small, greater quality loss | | [notus-7b-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q4_K_M.gguf) | Q4_K_M | 4.068 GB | medium, balanced quality - recommended | | [notus-7b-v1-Q5_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_0.gguf) | Q5_0 | 4.654 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [notus-7b-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_K_S.gguf) | Q5_K_S | 4.654 GB | large, low quality loss - recommended | | [notus-7b-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q5_K_M.gguf) | Q5_K_M | 4.779 GB | large, very low quality loss - recommended | | [notus-7b-v1-Q6_K.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q6_K.gguf) | Q6_K | 5.534 GB | very large, extremely low quality loss | | [notus-7b-v1-Q8_0.gguf](https://huggingface.co/tensorblock/notus-7b-v1-GGUF/blob/main/notus-7b-v1-Q8_0.gguf) | Q8_0 | 7.167 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/notus-7b-v1-GGUF --include "notus-7b-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/notus-7b-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```