---
language:
- ja
- en
license: llama2
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
base_model: rinna/youri-7b
tags:
- TensorBlock
- GGUF
model-index:
- name: youri-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.06
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.03
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
---
## rinna/youri-7b - GGUF
This repo contains GGUF format model files for [rinna/youri-7b](https://huggingface.co/rinna/youri-7b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [youri-7b-Q2_K.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q2_K.gguf) | Q2_K | 2.359 GB | smallest, significant quality loss - not recommended for most purposes |
| [youri-7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q3_K_S.gguf) | Q3_K_S | 2.746 GB | very small, high quality loss |
| [youri-7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q3_K_M.gguf) | Q3_K_M | 3.072 GB | very small, high quality loss |
| [youri-7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q3_K_L.gguf) | Q3_K_L | 3.350 GB | small, substantial quality loss |
| [youri-7b-Q4_0.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q4_0.gguf) | Q4_0 | 3.563 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [youri-7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q4_K_S.gguf) | Q4_K_S | 3.592 GB | small, greater quality loss |
| [youri-7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q4_K_M.gguf) | Q4_K_M | 3.801 GB | medium, balanced quality - recommended |
| [youri-7b-Q5_0.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q5_0.gguf) | Q5_0 | 4.332 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [youri-7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q5_K_S.gguf) | Q5_K_S | 4.332 GB | large, low quality loss - recommended |
| [youri-7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q5_K_M.gguf) | Q5_K_M | 4.455 GB | large, very low quality loss - recommended |
| [youri-7b-Q6_K.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q6_K.gguf) | Q6_K | 5.149 GB | very large, extremely low quality loss |
| [youri-7b-Q8_0.gguf](https://huggingface.co/tensorblock/youri-7b-GGUF/tree/main/youri-7b-Q8_0.gguf) | Q8_0 | 6.669 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/youri-7b-GGUF --include "youri-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/youri-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```