File size: 6,930 Bytes
7ead35c 661131f 7ead35c 661131f 7ead35c a15a8d8 661131f a15a8d8 661131f a15a8d8 661131f a15a8d8 661131f a15a8d8 661131f a15a8d8 661131f a15a8d8 7ead35c 4961a55 7ead35c 661131f 7ead35c 661131f 7ead35c 661131f 7ead35c c22b143 7ead35c 661131f 7ead35c a15a8d8 7ead35c 4a061f5 7791eb8 c22b143 9adcdb2 661131f 7ead35c 9adcdb2 661131f 4a061f5 1e31e42 661131f 4a061f5 661131f 38f406e 661131f 9adcdb2 661131f 9adcdb2 38f406e 661131f 9adcdb2 661131f 9adcdb2 38f406e 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f d1e5cff 7791eb8 661131f 9adcdb2 661131f 089732e 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 661131f 9adcdb2 f55267c 661131f 9adcdb2 661131f 9adcdb2 88fe7cd 9adcdb2 661131f 9adcdb2 7ead35c 9adcdb2 4961a55 7ead35c 908cc01 661131f 4961a55 9adcdb2 5ba3c40 7791eb8 9adcdb2 f7a63b5 aec2095 9adcdb2 ffb96e9 7791eb8 9adcdb2 68a0e51 bae33b9 9adcdb2 7ead35c 661131f 7ead35c 661131f 7ead35c 661131f 7ead35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
---
license: creativeml-openrail-m
base_model: "ptx0/pixart-900m-1024-ft-large"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- full
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_1.png
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_2.png
---
# pixart-900m-1024-ft
This is a full rank finetune derived from [ptx0/pixart-900m-1024-ft-large](https://huggingface.co/ptx0/pixart-900m-1024-ft-large).
The main validation prompt used during training was:
```
ethnographic photography of teddy bear at a picnic holding a sign that reads SOON
```
## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.0`
- Steps: `30`
- Sampler: `euler`
- Seed: `42`
- Resolutions: `1024x1024,1344x768,916x1152`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 1
- Training steps: 35500
- Learning rate: 1e-06
- Effective batch size: 192
- Micro-batch size: 24
- Gradient accumulation steps: 1
- Number of GPUs: 8
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used
## Datasets
### photo-concept-bucket
- Repeats: 0
- Total number of images: ~564672
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### moviecollection
- Repeats: 15
- Total number of images: ~768
- Total number of aspect buckets: 11
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### experimental
- Repeats: 0
- Total number of images: ~1728
- Total number of aspect buckets: 11
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### ethnic
- Repeats: 0
- Total number of images: ~1152
- Total number of aspect buckets: 7
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### sports
- Repeats: 0
- Total number of images: ~576
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### architecture
- Repeats: 0
- Total number of images: ~4224
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### shutterstock
- Repeats: 0
- Total number of images: ~14016
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### cinemamix-1mp
- Repeats: 0
- Total number of images: ~7296
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### nsfw-1024
- Repeats: 0
- Total number of images: ~10368
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### anatomy
- Repeats: 5
- Total number of images: ~15168
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### bg20k-1024
- Repeats: 0
- Total number of images: ~89088
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### yoga
- Repeats: 0
- Total number of images: ~2880
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### photo-aesthetics
- Repeats: 0
- Total number of images: ~28608
- Total number of aspect buckets: 17
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### text-1mp
- Repeats: 125
- Total number of images: ~12864
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### movieposters
- Repeats: 10
- Total number of images: ~192
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### normalnudes
- Repeats: 10
- Total number of images: ~384
- Total number of aspect buckets: 8
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### pixel-art
- Repeats: 0
- Total number of images: ~384
- Total number of aspect buckets: 11
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### signs
- Repeats: 0
- Total number of images: ~384
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### midjourney-v6-520k-raw
- Repeats: 0
- Total number of images: ~513792
- Total number of aspect buckets: 2
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### sfwbooru
- Repeats: 0
- Total number of images: ~271488
- Total number of aspect buckets: 6
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nijijourney-v6-520k-raw
- Repeats: 0
- Total number of images: ~516288
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### dalle3
- Repeats: 0
- Total number of images: ~1119168
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'pixart-900m-1024-ft'
prompt = 'ethnographic photography of teddy bear at a picnic holding a sign that reads SOON'
negative_prompt = 'blurry, cropped, ugly'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
prompt = "ethnographic photography of teddy bear at a picnic holding a sign that reads SOON"
negative_prompt = "blurry, cropped, ugly"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='blurry, cropped, ugly',
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=7.5,
guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
```
|