--- license: creativeml-openrail-m base_model: "ptx0/pixart-900m-1024-ft-large" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - full inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_1.png - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_2.png --- # pixart-900m-1024-ft This is a full rank finetune derived from [ptx0/pixart-900m-1024-ft-large](https://huggingface.co/ptx0/pixart-900m-1024-ft-large). The main validation prompt used during training was: ``` ethnographic photography of teddy bear at a picnic holding a sign that reads SOON ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `euler` - Seed: `42` - Resolutions: `1024x1024,1344x768,916x1152` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 38000 - Learning rate: 1e-06 - Effective batch size: 192 - Micro-batch size: 24 - Gradient accumulation steps: 1 - Number of GPUs: 8 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used ## Datasets ### photo-concept-bucket - Repeats: 0 - Total number of images: ~564672 - Total number of aspect buckets: 2 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### moviecollection - Repeats: 15 - Total number of images: ~768 - Total number of aspect buckets: 11 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### experimental - Repeats: 0 - Total number of images: ~1728 - Total number of aspect buckets: 11 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### ethnic - Repeats: 0 - Total number of images: ~1152 - Total number of aspect buckets: 7 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### sports - Repeats: 0 - Total number of images: ~576 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### architecture - Repeats: 0 - Total number of images: ~4224 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### shutterstock - Repeats: 0 - Total number of images: ~14016 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### cinemamix-1mp - Repeats: 0 - Total number of images: ~7296 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### nsfw-1024 - Repeats: 0 - Total number of images: ~10368 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### anatomy - Repeats: 5 - Total number of images: ~15168 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### bg20k-1024 - Repeats: 0 - Total number of images: ~89088 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### yoga - Repeats: 0 - Total number of images: ~2880 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### photo-aesthetics - Repeats: 0 - Total number of images: ~28608 - Total number of aspect buckets: 17 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### text-1mp - Repeats: 125 - Total number of images: ~12864 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### movieposters - Repeats: 10 - Total number of images: ~192 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### normalnudes - Repeats: 10 - Total number of images: ~384 - Total number of aspect buckets: 8 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### pixel-art - Repeats: 0 - Total number of images: ~384 - Total number of aspect buckets: 11 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### signs - Repeats: 0 - Total number of images: ~384 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### midjourney-v6-520k-raw - Repeats: 0 - Total number of images: ~513792 - Total number of aspect buckets: 2 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### sfwbooru - Repeats: 0 - Total number of images: ~271488 - Total number of aspect buckets: 73 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### nijijourney-v6-520k-raw - Repeats: 0 - Total number of images: ~516288 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### dalle3 - Repeats: 0 - Total number of images: ~1119168 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'pixart-900m-1024-ft' prompt = 'ethnographic photography of teddy bear at a picnic holding a sign that reads SOON' negative_prompt = 'blurry, cropped, ugly' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') prompt = "ethnographic photography of teddy bear at a picnic holding a sign that reads SOON" negative_prompt = "blurry, cropped, ugly" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=7.5, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ```