--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - MS_Marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers --- This is a ONNX export of [`sentence-transformers/all-distilroberta-v1`](https://huggingface.co/sentence-transformers/all-distilroberta-v1). The export was done using [HF Optimum](https://huggingface.co/docs/optimum/index): ```python from optimum.exporters.onnx import main_export main_export('sentence-transformers/all-distilroberta-v1', "./output", cache_dir='./cache', optimize='O1') ``` Please note, this ONNX model does not contain the mean pooling layer, it needs to be done in code afterwards or the embeddings won't work. Code like this: ```python #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) ``` See the example code from the original model in the "Usage (HuggingFace Transformers)" section.