--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - audiofolder model-index: - name: whisper-large-v2-medical-7 results: [] --- # whisper-large-v2-medical-7 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.26 | 20 | 0.5709 | | 0.9523 | 0.51 | 40 | 0.3137 | | 0.3351 | 0.77 | 60 | 0.1660 | | 0.1566 | 1.03 | 80 | 0.1514 | | 0.0977 | 1.28 | 100 | 0.1450 | | 0.0977 | 1.54 | 120 | 0.1409 | | 0.0899 | 1.79 | 140 | 0.1362 | | 0.0922 | 2.05 | 160 | 0.1341 | | 0.0644 | 2.31 | 180 | 0.1358 | | 0.0544 | 2.56 | 200 | 0.1348 | | 0.0544 | 2.82 | 220 | 0.1337 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.4.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2