--- language: - ky license: apache-2.0 pipeline_tag: automatic-speech-recognition --- Whisper ASR for Kyrgyz Language is an automatic speech recognition (ASR) solution customized for the Kyrgyz language. It is based on the pre-trained Whisper model and has undergone fine-tuning and adaptation to accurately transcribe Kyrgyz speech, taking into account its specific phonetic intricacies. To run the model, first install: ```bash !pip install datasets>=2.6.1 !pip install git+https://github.com/huggingface/transformers !pip install librosa !pip install evaluate>=0.30 !pip install jiwer !pip install gradio==3.50.2 ``` Linking the notebook to the Hub is straightforward - it simply requires entering your Hub authentication token when prompted. ```python from huggingface_hub import notebook_login notebook_login() ``` Now that we've fine-tuned our model, we can build a demo to show off its ASR capabilities! We'll use 🤗 Transformers pipeline, which will take care of the entire ASR pipeline, right from pre-processing the audio inputs to decoding the model predictions. We'll build our interactive demo with Gradio. Gradio is arguably the most straightforward way of building machine learning demos; with Gradio, we can build a demo in just a matter of minutes! Running the example below will generate a Gradio demo where we can record speech through the microphone of our computer and input it to our fine-tuned Whisper model to transcribe the corresponding text: ```python from transformers import pipeline import gradio as gr pipe = pipeline(model="UlutSoftLLC/whisper-small-kyrgyz") def transcribe(audio): text = pipe(audio)["text"] return text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text", title="Whisper Small Kyrgyz", description="Realtime demo for Kyrgyz speech recognition using a fine-tuned Whisper small model.", ) iface.launch() ```