TTimur
commited on
Commit
•
84c721b
0
Parent(s):
Duplicate from TTimur/xlm-roberta-base-kyrgyzNER
Browse files- .gitattributes +36 -0
- README.md +178 -0
- config.json +134 -0
- model.safetensors +3 -0
- runs/Feb17_18-51-14_24317775ef61/events.out.tfevents.1708195877.24317775ef61.13761.0 +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
- training_args.bin +3 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-base-kyrgyzNER
|
13 |
+
results: []
|
14 |
+
language:
|
15 |
+
- ky
|
16 |
+
---
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# kyrgyzNER model (xlm-roberta-base) by The_Cramer_Project
|
21 |
+
|
22 |
+
|
23 |
+
- The original repository: https://github.com/Akyl-AI/KyrgyzNER
|
24 |
+
- Paper will be uploaded soon
|
25 |
+
- KyrgyzNER dataset and Codes will be uploaded soon
|
26 |
+
|
27 |
+
|
28 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the KyrgyzNER dataset.
|
29 |
+
It achieves the following results on the evaluation set:
|
30 |
+
- Loss: 0.3273
|
31 |
+
- Precision: 0.7090
|
32 |
+
- Recall: 0.6946
|
33 |
+
- F1: 0.7017
|
34 |
+
- Accuracy: 0.9119
|
35 |
+
|
36 |
+
|
37 |
+
## How to use
|
38 |
+
You can use this model with the Transformers pipeline for NER.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, AutoConfig
|
42 |
+
from transformers import pipeline
|
43 |
+
|
44 |
+
id2label = {
|
45 |
+
'LABEL_0': 'B-NATIONAL',
|
46 |
+
'LABEL_1': 'I-PLANT',
|
47 |
+
'LABEL_2': 'I-ORGANISATION',
|
48 |
+
'LABEL_3': 'B-ORGANISATION',
|
49 |
+
'LABEL_4': 'B-MEDIA',
|
50 |
+
'LABEL_5': 'I-ARTIFACT',
|
51 |
+
'LABEL_6': 'B-AWARD',
|
52 |
+
'LABEL_7': 'B-UNKNOWN',
|
53 |
+
'LABEL_8': 'I-LOCATION',
|
54 |
+
'LABEL_9': 'B-PERSON',
|
55 |
+
'LABEL_10': 'I-LEGAL',
|
56 |
+
'LABEL_11': 'B-BUSINESS',
|
57 |
+
'LABEL_12': 'B-ACRONYM',
|
58 |
+
'LABEL_13': 'I-PERIOD',
|
59 |
+
'LABEL_14': 'B-INSTITUTION',
|
60 |
+
'LABEL_15': 'I-MEASURE',
|
61 |
+
'LABEL_16': 'B-CREATION',
|
62 |
+
'LABEL_17': 'I-ACRONYM',
|
63 |
+
'LABEL_18': 'I-AWARD',
|
64 |
+
'LABEL_19': 'I-WEBSITE',
|
65 |
+
'LABEL_20': 'B-PERIOD',
|
66 |
+
'LABEL_21': 'I-PERSON',
|
67 |
+
'LABEL_22': 'I-PERSON_TYPE',
|
68 |
+
'LABEL_23': 'B-SUBSTANCE',
|
69 |
+
'LABEL_24': 'O',
|
70 |
+
'LABEL_25': 'B-PLANT',
|
71 |
+
'LABEL_26': 'I-INSTITUTION',
|
72 |
+
'LABEL_27': 'I-SUBSTANCE',
|
73 |
+
'LABEL_28': 'I-INSTALLATION',
|
74 |
+
'LABEL_29': 'B-CONCEPT',
|
75 |
+
'LABEL_30': 'B-TITLE',
|
76 |
+
'LABEL_31': 'I-EVENT',
|
77 |
+
'LABEL_32': 'B-ARTIFACT',
|
78 |
+
'LABEL_33': 'B-MEASURE',
|
79 |
+
'LABEL_34': 'B-LOCATION',
|
80 |
+
'LABEL_35': 'I-BUSINESS',
|
81 |
+
'LABEL_36': 'B-ANIMAL',
|
82 |
+
'LABEL_37': 'B-PERSON_TYPE',
|
83 |
+
'LABEL_38': 'B-INSTALLATION',
|
84 |
+
'LABEL_39': 'I-TITLE',
|
85 |
+
'LABEL_40': 'B-IDENTIFIER',
|
86 |
+
'LABEL_41': 'I-IDENTIFIER',
|
87 |
+
'LABEL_42': 'B-LEGAL',
|
88 |
+
'LABEL_43': 'I-MEDIA',
|
89 |
+
'LABEL_44': 'I-CONCEPT',
|
90 |
+
'LABEL_45': 'I-UNKNOWN',
|
91 |
+
'LABEL_46': 'B-EVENT',
|
92 |
+
'LABEL_47': 'B-WEBSITE',
|
93 |
+
'LABEL_48': 'I-NATIONAL',
|
94 |
+
'LABEL_49': 'I-CREATION',
|
95 |
+
'LABEL_50': 'I-ANIMAL'}
|
96 |
+
|
97 |
+
model_ckpt = "TTimur/xlm-roberta-base-kyrgyzNER"
|
98 |
+
|
99 |
+
config = AutoConfig.from_pretrained(model_ckpt)
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
101 |
+
model = AutoModelForTokenClassification.from_pretrained(model_ckpt, config = config)
|
102 |
+
|
103 |
+
# aggregation_strategy = "none"
|
104 |
+
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "none")
|
105 |
+
|
106 |
+
example = "Кыргызстан Орто Азиянын түндүк-чыгышында орун алган мамлекет."
|
107 |
+
ner_results = nlp(example)
|
108 |
+
for result in ner_results:
|
109 |
+
result.update({'entity': id2label[result['entity']]})
|
110 |
+
print(result)
|
111 |
+
|
112 |
+
# output:
|
113 |
+
# {'entity': 'B-LOCATION', 'score': 0.95103735, 'index': 1, 'word': '▁Кыргызстан', 'start': 0, 'end': 10}
|
114 |
+
# {'entity': 'B-LOCATION', 'score': 0.79447913, 'index': 2, 'word': '▁Ор', 'start': 11, 'end': 13}
|
115 |
+
# {'entity': 'I-LOCATION', 'score': 0.8703734, 'index': 3, 'word': 'то', 'start': 13, 'end': 15}
|
116 |
+
# {'entity': 'I-LOCATION', 'score': 0.942387, 'index': 4, 'word': '▁Азия', 'start': 16, 'end': 20}
|
117 |
+
# {'entity': 'I-LOCATION', 'score': 0.8542615, 'index': 5, 'word': 'нын', 'start': 20, 'end': 23}
|
118 |
+
# {'entity': 'I-LOCATION', 'score': 0.70930535, 'index': 6, 'word': '▁түн', 'start': 24, 'end': 27}
|
119 |
+
# {'entity': 'I-LOCATION', 'score': 0.6540094, 'index': 7, 'word': 'дүк', 'start': 27, 'end': 30}
|
120 |
+
# {'entity': 'I-LOCATION', 'score': 0.63446337, 'index': 8, 'word': '-', 'start': 30, 'end': 31}
|
121 |
+
# {'entity': 'I-LOCATION', 'score': 0.6204858, 'index': 9, 'word': 'чы', 'start': 31, 'end': 33}
|
122 |
+
# {'entity': 'I-LOCATION', 'score': 0.6786872, 'index': 10, 'word': 'г', 'start': 33, 'end': 34}
|
123 |
+
# {'entity': 'I-LOCATION', 'score': 0.64190257, 'index': 11, 'word': 'ыш', 'start': 34, 'end': 36}
|
124 |
+
# {'entity': 'O', 'score': 0.64438057, 'index': 12, 'word': 'ында', 'start': 36, 'end': 40}
|
125 |
+
# {'entity': 'O', 'score': 0.9916931, 'index': 13, 'word': '▁орун', 'start': 41, 'end': 45}
|
126 |
+
# {'entity': 'O', 'score': 0.9953047, 'index': 14, 'word': '▁алган', 'start': 46, 'end': 51}
|
127 |
+
# {'entity': 'O', 'score': 0.9901377, 'index': 15, 'word': '▁мамлекет', 'start': 52, 'end': 60}
|
128 |
+
# {'entity': 'O', 'score': 0.99605453, 'index': 16, 'word': '.', 'start': 60, 'end': 61}
|
129 |
+
|
130 |
+
|
131 |
+
token = ""
|
132 |
+
label_list = []
|
133 |
+
token_list = []
|
134 |
+
|
135 |
+
for result in ner_results:
|
136 |
+
if result["word"].startswith("▁"):
|
137 |
+
if token:
|
138 |
+
token_list.append(token.replace("▁", ""))
|
139 |
+
token = result["word"]
|
140 |
+
label_list.append(result["entity"])
|
141 |
+
else:
|
142 |
+
token += result["word"]
|
143 |
+
|
144 |
+
token_list.append(token.replace("▁", ""))
|
145 |
+
|
146 |
+
for token, label in zip(token_list, label_list):
|
147 |
+
print(f"{token}\t{label}")
|
148 |
+
|
149 |
+
|
150 |
+
# output:
|
151 |
+
# Кыргызстан B-LOCATION
|
152 |
+
# Орто B-LOCATION
|
153 |
+
# Азиянын I-LOCATION
|
154 |
+
# түндүк-чыгышында I-LOCATION
|
155 |
+
# орун O
|
156 |
+
# алган O
|
157 |
+
# мамлекет. O
|
158 |
+
|
159 |
+
# aggregation_strategy = "simple"
|
160 |
+
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "simple")
|
161 |
+
example = "Кыргызстан Орто Азиянын түндүк-чыгышында орун алган мамлекет."
|
162 |
+
|
163 |
+
ner_results = nlp(example)
|
164 |
+
for result in ner_results:
|
165 |
+
result.update({'entity_group': id2label[result['entity_group']]})
|
166 |
+
print(result)
|
167 |
+
|
168 |
+
# output:
|
169 |
+
# {'entity_group': 'B-LOCATION', 'score': 0.87275827, 'word': 'Кыргызстан Ор', 'start': 0, 'end': 13}
|
170 |
+
# {'entity_group': 'I-LOCATION', 'score': 0.73398614, 'word': 'то Азиянын түндүк-чыгыш', 'start': 13, 'end': 36}
|
171 |
+
# {'entity_group': 'O', 'score': 0.92351407, 'word': 'ында орун алган мамлекет.', 'start': 36, 'end': 61}
|
172 |
+
|
173 |
+
```
|
174 |
+
|
175 |
+
|
176 |
+
# NE classes
|
177 |
+
|
178 |
+
**PERSON**, **LOCATION** , **MEASURE** , **INSTITUTION** , **PERIOD** , **ORGANISATION** , **MEDIA** , **TITLE** , **BUSINESS** , **LEGAL** , **EVENT** , **ARTIFACT** , **INSTALLATION** , **PERSON_TYPE**, **NATIONAL**, **CONCEPT**, **CREATION**, **WEBSITE**, **SUBSTANCE**, **ACRONYM**, **IDENTIFIER**, **UNKNOWN**, **AWARD**, **ANIMAL**
|
config.json
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5",
|
20 |
+
"6": "LABEL_6",
|
21 |
+
"7": "LABEL_7",
|
22 |
+
"8": "LABEL_8",
|
23 |
+
"9": "LABEL_9",
|
24 |
+
"10": "LABEL_10",
|
25 |
+
"11": "LABEL_11",
|
26 |
+
"12": "LABEL_12",
|
27 |
+
"13": "LABEL_13",
|
28 |
+
"14": "LABEL_14",
|
29 |
+
"15": "LABEL_15",
|
30 |
+
"16": "LABEL_16",
|
31 |
+
"17": "LABEL_17",
|
32 |
+
"18": "LABEL_18",
|
33 |
+
"19": "LABEL_19",
|
34 |
+
"20": "LABEL_20",
|
35 |
+
"21": "LABEL_21",
|
36 |
+
"22": "LABEL_22",
|
37 |
+
"23": "LABEL_23",
|
38 |
+
"24": "LABEL_24",
|
39 |
+
"25": "LABEL_25",
|
40 |
+
"26": "LABEL_26",
|
41 |
+
"27": "LABEL_27",
|
42 |
+
"28": "LABEL_28",
|
43 |
+
"29": "LABEL_29",
|
44 |
+
"30": "LABEL_30",
|
45 |
+
"31": "LABEL_31",
|
46 |
+
"32": "LABEL_32",
|
47 |
+
"33": "LABEL_33",
|
48 |
+
"34": "LABEL_34",
|
49 |
+
"35": "LABEL_35",
|
50 |
+
"36": "LABEL_36",
|
51 |
+
"37": "LABEL_37",
|
52 |
+
"38": "LABEL_38",
|
53 |
+
"39": "LABEL_39",
|
54 |
+
"40": "LABEL_40",
|
55 |
+
"41": "LABEL_41",
|
56 |
+
"42": "LABEL_42",
|
57 |
+
"43": "LABEL_43",
|
58 |
+
"44": "LABEL_44",
|
59 |
+
"45": "LABEL_45",
|
60 |
+
"46": "LABEL_46",
|
61 |
+
"47": "LABEL_47",
|
62 |
+
"48": "LABEL_48",
|
63 |
+
"49": "LABEL_49",
|
64 |
+
"50": "LABEL_50"
|
65 |
+
},
|
66 |
+
"initializer_range": 0.02,
|
67 |
+
"intermediate_size": 3072,
|
68 |
+
"label2id": {
|
69 |
+
"LABEL_0": 0,
|
70 |
+
"LABEL_1": 1,
|
71 |
+
"LABEL_10": 10,
|
72 |
+
"LABEL_11": 11,
|
73 |
+
"LABEL_12": 12,
|
74 |
+
"LABEL_13": 13,
|
75 |
+
"LABEL_14": 14,
|
76 |
+
"LABEL_15": 15,
|
77 |
+
"LABEL_16": 16,
|
78 |
+
"LABEL_17": 17,
|
79 |
+
"LABEL_18": 18,
|
80 |
+
"LABEL_19": 19,
|
81 |
+
"LABEL_2": 2,
|
82 |
+
"LABEL_20": 20,
|
83 |
+
"LABEL_21": 21,
|
84 |
+
"LABEL_22": 22,
|
85 |
+
"LABEL_23": 23,
|
86 |
+
"LABEL_24": 24,
|
87 |
+
"LABEL_25": 25,
|
88 |
+
"LABEL_26": 26,
|
89 |
+
"LABEL_27": 27,
|
90 |
+
"LABEL_28": 28,
|
91 |
+
"LABEL_29": 29,
|
92 |
+
"LABEL_3": 3,
|
93 |
+
"LABEL_30": 30,
|
94 |
+
"LABEL_31": 31,
|
95 |
+
"LABEL_32": 32,
|
96 |
+
"LABEL_33": 33,
|
97 |
+
"LABEL_34": 34,
|
98 |
+
"LABEL_35": 35,
|
99 |
+
"LABEL_36": 36,
|
100 |
+
"LABEL_37": 37,
|
101 |
+
"LABEL_38": 38,
|
102 |
+
"LABEL_39": 39,
|
103 |
+
"LABEL_4": 4,
|
104 |
+
"LABEL_40": 40,
|
105 |
+
"LABEL_41": 41,
|
106 |
+
"LABEL_42": 42,
|
107 |
+
"LABEL_43": 43,
|
108 |
+
"LABEL_44": 44,
|
109 |
+
"LABEL_45": 45,
|
110 |
+
"LABEL_46": 46,
|
111 |
+
"LABEL_47": 47,
|
112 |
+
"LABEL_48": 48,
|
113 |
+
"LABEL_49": 49,
|
114 |
+
"LABEL_5": 5,
|
115 |
+
"LABEL_50": 50,
|
116 |
+
"LABEL_6": 6,
|
117 |
+
"LABEL_7": 7,
|
118 |
+
"LABEL_8": 8,
|
119 |
+
"LABEL_9": 9
|
120 |
+
},
|
121 |
+
"layer_norm_eps": 1e-05,
|
122 |
+
"max_position_embeddings": 514,
|
123 |
+
"model_type": "xlm-roberta",
|
124 |
+
"num_attention_heads": 12,
|
125 |
+
"num_hidden_layers": 12,
|
126 |
+
"output_past": true,
|
127 |
+
"pad_token_id": 1,
|
128 |
+
"position_embedding_type": "absolute",
|
129 |
+
"torch_dtype": "float32",
|
130 |
+
"transformers_version": "4.35.2",
|
131 |
+
"type_vocab_size": 1,
|
132 |
+
"use_cache": true,
|
133 |
+
"vocab_size": 250002
|
134 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:825a899432c24c62b1430f2bad2c3a5b37a76ccc4e9eaf7ab818300be4bd6a98
|
3 |
+
size 1109993156
|
runs/Feb17_18-51-14_24317775ef61/events.out.tfevents.1708195877.24317775ef61.13761.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:030612b965576e2e38ad236ffd59c8729c1f478f220d857416a6956891bbd7d5
|
3 |
+
size 11640
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a4661b2cb6b8a1007906509fe18cbfbc03062a086102bf7b80cfedb80f16c37
|
3 |
+
size 17082854
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9e1d454a8e2cdffcb175d293b4fbf7ed3b7ee03c3cea766485fa493c950f84
|
3 |
+
size 4600
|