theblackcat102
commited on
Commit
•
844b303
1
Parent(s):
6ec6e37
Update README.md
Browse files
README.md
CHANGED
@@ -9,17 +9,57 @@ widget:
|
|
9 |
example_title: "Tutorial"
|
10 |
---
|
11 |
|
12 |
-
Supervised Finetuning demonstration
|
13 |
|
14 |
Models are finetuned on generated conversation curated from the [Open Assistant](https://github.com/LAION-AI/Open-Assistant).
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
17 |
```
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
|
25 |
|
|
|
|
9 |
example_title: "Tutorial"
|
10 |
---
|
11 |
|
12 |
+
# Supervised Finetuning demonstration
|
13 |
|
14 |
Models are finetuned on generated conversation curated from the [Open Assistant](https://github.com/LAION-AI/Open-Assistant).
|
15 |
|
16 |
|
17 |
+
# Mixing reward model with sampling
|
18 |
+
|
19 |
+
We can use reward model to rank the best answer using this example code:
|
20 |
+
|
21 |
```
|
22 |
+
import torch
|
23 |
+
from transformers import AutoModelForSequenceClassification
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/galactica-1.3b-base-finetuned/checkpoint-1000")
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("facebook/galactica-1.3b-base-finetuned/checkpoint-1000").eval().half().cuda()
|
27 |
|
28 |
+
reward_name = "theblackcat102/electra-large-reward-model"
|
29 |
+
rank_model, rank_tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
|
30 |
+
rank_model = rank_model.eval().half().cuda()
|
31 |
|
32 |
+
questions = ["<question>How do I make a resume?<answer>"]
|
33 |
+
for question in questions:
|
34 |
+
inputs = tokenizer(question, return_tensors="pt", padding=True).to(0)
|
35 |
+
if 'token_type_ids' in inputs:
|
36 |
+
inputs.pop('token_type_ids')
|
37 |
+
outputs = model.generate(**inputs, do_sample=True,
|
38 |
+
top_k=60,
|
39 |
+
max_length=220,
|
40 |
+
num_return_sequences=80,
|
41 |
+
early_stopping=True
|
42 |
+
)
|
43 |
+
print(question)
|
44 |
+
|
45 |
+
results = []
|
46 |
+
for i, beam_output in enumerate(outputs):
|
47 |
+
output = tokenizer.decode(beam_output, truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"])
|
48 |
+
question, answer = output.split('<answer>', maxsplit=1)
|
49 |
+
answer = answer.split('<question>')[0].replace('<|endoftext|>', '').lstrip().split('<answer>')[0]
|
50 |
+
rank_inputs = rank_tokenizer(question, answer, return_tensors="pt", padding=True, max_length=512, truncation=True).to(1)
|
51 |
+
score = rank_model(**rank_inputs).logits[0].cpu().detach()
|
52 |
+
results.append((answer, score, output))
|
53 |
+
full_results[question] = results
|
54 |
+
sorted_result = sorted(results, key=lambda x:x[1], reverse=True)
|
55 |
+
total_scores += sorted_result[0][1].item()
|
56 |
+
print('score',sorted_result[0][1].item())
|
57 |
+
print('-----Best rank-----')
|
58 |
+
print(sorted_result[0][0])
|
59 |
+
print('-------------------')
|
60 |
+
```
|
61 |
|
62 |
|
63 |
+
Checkout weights and biases [report](https://api.wandb.ai/report/theblackcat102/8yg0c0r2) for training detail.
|
64 |
|
65 |
+
Thanks to [BASIC lab](https://basiclab.lab.nycu.edu.tw/Yummy/index.html#) for compute resource
|