thennal commited on
Commit
d869234
1 Parent(s): 90ac9d5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ml
4
+ license: apache-2.0
5
+ tags:
6
+ - whisper-event
7
+ - generated_from_trainer
8
+ datasets:
9
+ - thennal/imasc
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small Ml - IMaSC
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: ICFOSS Malayalam Speech Corpus
20
+ type: thennal/imasc
21
+ config: ml
22
+ split: test
23
+ args: ml
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 75.40229885057471
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # Whisper Small Ml - IMaSC
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ICFOSS Malayalam Speech Corpus dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2750
38
+ - Wer: 75.4023
39
+ - Cer: 20.0050
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 1e-05
59
+ - train_batch_size: 64
60
+ - eval_batch_size: 32
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_steps: 500
65
+ - training_steps: 2000
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
71
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
72
+ | 0.0678 | 0.93 | 500 | 0.2756 | 86.6667 | 31.1467 |
73
+ | 0.0342 | 1.86 | 1000 | 0.2424 | 73.7931 | 20.3305 |
74
+ | 0.0192 | 2.78 | 1500 | 0.2615 | 74.7126 | 19.8297 |
75
+ | 0.0107 | 3.71 | 2000 | 0.2750 | 75.4023 | 20.0050 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.26.0.dev0
81
+ - Pytorch 1.13.0+cu117
82
+ - Datasets 2.7.1.dev0
83
+ - Tokenizers 0.13.2