GGUF
Inference Endpoints
conversational
thesven commited on
Commit
8404a48
β€’
1 Parent(s): 36029b6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+
6
+
7
+
8
+
9
+
10
+ ## Quantization Description
11
+
12
+ This repo contains a GGUF Quantized versions of the WizardLM-2-7B model
13
+
14
+ <div style="text-align: center;">
15
+ <a href="https://github.com/thesven/GGUF-n-Go">
16
+ <img src="https://github.com/thesven/GGUF-n-Go/blob/main/assets/quantized_with.png?raw=true" alt="image/png" style="max-width: 350px;">
17
+ </a>
18
+ </div>
19
+
20
+ Weights sourced from:
21
+ [lucyknada/microsoft_WizardLM-2-7B](https://huggingface.co/lucyknada/microsoft_WizardLM-2-7B)
22
+
23
+ ## Original Model Card
24
+
25
+ <p style="font-size:20px;" align="center">
26
+ 🏠 <a href="https://wizardlm.github.io/WizardLM2" target="_blank">WizardLM-2 Release Blog</a> </p>
27
+ <p align="center">
28
+ πŸ€— <a href="https://huggingface.co/collections/microsoft/wizardlm-2-661d403f71e6c8257dbd598a" target="_blank">HF Repo</a> β€’πŸ± <a href="https://github.com/victorsungo/WizardLM/tree/main/WizardLM-2" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
29
+ </p>
30
+ <p align="center">
31
+ πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
32
+ </p>
33
+
34
+
35
+
36
+ ## News πŸ”₯πŸ”₯πŸ”₯ [2024/04/15]
37
+
38
+ We introduce and opensource WizardLM-2, our next generation state-of-the-art large language models,
39
+ which have improved performance on complex chat, multilingual, reasoning and agent.
40
+ New family includes three cutting-edge models: WizardLM-2 8x22B, WizardLM-2 70B, and WizardLM-2 7B.
41
+
42
+ - WizardLM-2 8x22B is our most advanced model, demonstrates highly competitive performance compared to those leading proprietary works
43
+ and consistently outperforms all the existing state-of-the-art opensource models.
44
+ - WizardLM-2 70B reaches top-tier reasoning capabilities and is the first choice in the same size.
45
+ - WizardLM-2 7B is the fastest and achieves comparable performance with existing 10x larger opensource leading models.
46
+
47
+ For more details of WizardLM-2 please read our [release blog post](https://wizardlm.github.io/WizardLM2) and upcoming paper.
48
+
49
+
50
+ ## Model Details
51
+
52
+ * **Model name**: WizardLM-2 7B
53
+ * **Developed by**: WizardLM@Microsoft AI
54
+ * **Base model**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
55
+ * **Parameters**: 7B
56
+ * **Language(s)**: Multilingual
57
+ * **Blog**: [Introducing WizardLM-2](https://wizardlm.github.io/WizardLM2)
58
+ * **Repository**: [https://github.com/nlpxucan/WizardLM](https://github.com/nlpxucan/WizardLM)
59
+ * **Paper**: WizardLM-2 (Upcoming)
60
+ * **License**: Apache2.0
61
+
62
+
63
+
64
+ ## Model Capacities
65
+
66
+
67
+ **MT-Bench**
68
+
69
+ We also adopt the automatic MT-Bench evaluation framework based on GPT-4 proposed by lmsys to assess the performance of models.
70
+ The WizardLM-2 8x22B even demonstrates highly competitive performance compared to the most advanced proprietary models.
71
+ Meanwhile, WizardLM-2 7B and WizardLM-2 70B are all the top-performing models among the other leading baselines at 7B to 70B model scales.
72
+
73
+ <p align="center" width="100%">
74
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/mtbench.png" alt="MTBench" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
75
+ </p>
76
+
77
+
78
+ **Human Preferences Evaluation**
79
+
80
+ We carefully collected a complex and challenging set consisting of real-world instructions, which includes main requirements of humanity, such as writing, coding, math, reasoning, agent, and multilingual.
81
+ We report the win:loss rate without tie:
82
+
83
+ - WizardLM-2 8x22B is just slightly falling behind GPT-4-1106-preview, and significantly stronger than Command R Plus and GPT4-0314.
84
+ - WizardLM-2 70B is better than GPT4-0613, Mistral-Large, and Qwen1.5-72B-Chat.
85
+ - WizardLM-2 7B is comparable with Qwen1.5-32B-Chat, and surpasses Qwen1.5-14B-Chat and Starling-LM-7B-beta.
86
+
87
+ <p align="center" width="100%">
88
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/winall.png" alt="Win" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
89
+ </p>
90
+
91
+
92
+
93
+
94
+
95
+ ## Method Overview
96
+ We built a **fully AI powered synthetic training system** to train WizardLM-2 models, please refer to our [blog](https://wizardlm.github.io/WizardLM2) for more details of this system.
97
+
98
+ <p align="center" width="100%">
99
+ <a ><img src="https://raw.githubusercontent.com/WizardLM/WizardLM2/main/static/images/exp_1.png" alt="Method" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
100
+ </p>
101
+
102
+
103
+
104
+
105
+
106
+ ## Usage
107
+
108
+ ❗<b>Note for model system prompts usage:</b>
109
+
110
+
111
+ <b>WizardLM-2</b> adopts the prompt format from <b>Vicuna</b> and supports **multi-turn** conversation. The prompt should be as following:
112
+
113
+ ```
114
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,
115
+ detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>
116
+ USER: Who are you? ASSISTANT: I am WizardLM.</s>......
117
+ ```
118
+
119
+ <b> Inference WizardLM-2 Demo Script</b>
120
+
121
+ We provide a WizardLM-2 inference demo [code](https://github.com/nlpxucan/WizardLM/tree/main/demo) on our github