File size: 7,796 Bytes
dcd1ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4da6ea
 
 
 
 
 
 
 
 
 
dcd1ec7
 
 
 
 
 
 
 
 
99c6ed4
b9f926f
 
 
 
 
 
 
 
 
 
 
 
dcd1ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
license: apache-2.0
base_model: thezeivier/Grietas_10k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Grietas_10k-Fine-tuning
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Grietas_10k-Fine-tuning

This model is a fine-tuned version of [thezeivier/Grietas_10k](https://huggingface.co/thezeivier/Grietas_10k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3864
- Accuracy: 0.8860

## Model description

More information needed

## Intended uses & limitations

Este modelo ha sido diseñado para la clasificación de imágenes de infraestructuras en tres categorías:

- Sano (sin daños en la estructura de concreto).
- Fisura (daños leves e insignificantes en la estructura de concreto).
- Grieta (daños graves y de alto riesgo en la estructura de concreto).

Este modelo de visión artificial puede ser una herramienta valiosa para identificar posibles amenazas de colapso en estructuras de concreto en caso de futuros terremotos.

Limitaciones:
El modelo se ha entrenado exclusivamente con imágenes correspondientes a las tres categorías mencionadas anteriormente y no incorpora información sobre la distancia entre la cámara y la grieta capturada en la imagen.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

Los siguientes hiperparámetros fueron utilizados durante el entrenamiento:
- learning_rate (tasa de aprendizaje): 5e-05
- train_batch_size (tamaño del lote de entrenamiento): 80
- eval_batch_size (tamaño del lote de evaluación): 32
- seed (semilla): 42
- gradient_accumulation_steps (pasos de acumulación de gradientes): 4
- total_train_batch_size (tamaño total del lote de entrenamiento): 320
- optimizer (optimizador): Adam con betas=(0.9,0.999) y epsilon=1e-08
- lr_scheduler_type (tipo de programador de tasa de aprendizaje): lineal
- lr_scheduler_warmup_ratio (proporción de calentamiento del programador de tasa de aprendizaje): 0.1
- num_epochs (número de épocas): 100

Estos hiperparámetros fueron utilizados para entrenar el modelo y pueden ser configurados en la parte correspondiente del modelo para replicar las mismas condiciones de entrenamiento. Cada hiperparámetro tiene un impacto en cómo se ajusta el modelo a los datos y puede afectar su rendimiento y velocidad de entrenamiento, por lo que es importante seleccionarlos cuidadosamente.

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.8   | 2    | 1.3737          | 0.3679   |
| No log        | 2.0   | 5    | 1.0234          | 0.6218   |
| No log        | 2.8   | 7    | 0.8146          | 0.7254   |
| 1.0488        | 4.0   | 10   | 0.6621          | 0.7772   |
| 1.0488        | 4.8   | 12   | 0.6295          | 0.8031   |
| 1.0488        | 6.0   | 15   | 0.5390          | 0.8083   |
| 1.0488        | 6.8   | 17   | 0.4902          | 0.8290   |
| 0.4981        | 8.0   | 20   | 0.4645          | 0.8290   |
| 0.4981        | 8.8   | 22   | 0.4484          | 0.8497   |
| 0.4981        | 10.0  | 25   | 0.4543          | 0.8446   |
| 0.4981        | 10.8  | 27   | 0.4325          | 0.8394   |
| 0.3669        | 12.0  | 30   | 0.4210          | 0.8497   |
| 0.3669        | 12.8  | 32   | 0.4303          | 0.8342   |
| 0.3669        | 14.0  | 35   | 0.4170          | 0.8497   |
| 0.3669        | 14.8  | 37   | 0.3861          | 0.8601   |
| 0.2811        | 16.0  | 40   | 0.3629          | 0.8705   |
| 0.2811        | 16.8  | 42   | 0.3982          | 0.8653   |
| 0.2811        | 18.0  | 45   | 0.4492          | 0.8290   |
| 0.2811        | 18.8  | 47   | 0.4216          | 0.8342   |
| 0.2026        | 20.0  | 50   | 0.4614          | 0.8394   |
| 0.2026        | 20.8  | 52   | 0.4325          | 0.8446   |
| 0.2026        | 22.0  | 55   | 0.4755          | 0.8342   |
| 0.2026        | 22.8  | 57   | 0.4175          | 0.8394   |
| 0.1709        | 24.0  | 60   | 0.4175          | 0.8497   |
| 0.1709        | 24.8  | 62   | 0.4105          | 0.8446   |
| 0.1709        | 26.0  | 65   | 0.4140          | 0.8601   |
| 0.1709        | 26.8  | 67   | 0.4641          | 0.8394   |
| 0.1293        | 28.0  | 70   | 0.4214          | 0.8394   |
| 0.1293        | 28.8  | 72   | 0.3802          | 0.8808   |
| 0.1293        | 30.0  | 75   | 0.4875          | 0.8290   |
| 0.1293        | 30.8  | 77   | 0.3972          | 0.8705   |
| 0.1167        | 32.0  | 80   | 0.4853          | 0.8394   |
| 0.1167        | 32.8  | 82   | 0.4082          | 0.8549   |
| 0.1167        | 34.0  | 85   | 0.3917          | 0.8601   |
| 0.1167        | 34.8  | 87   | 0.3573          | 0.8653   |
| 0.1034        | 36.0  | 90   | 0.4312          | 0.8497   |
| 0.1034        | 36.8  | 92   | 0.4035          | 0.8497   |
| 0.1034        | 38.0  | 95   | 0.4413          | 0.8238   |
| 0.1034        | 38.8  | 97   | 0.4728          | 0.8446   |
| 0.0782        | 40.0  | 100  | 0.3977          | 0.8808   |
| 0.0782        | 40.8  | 102  | 0.3449          | 0.8912   |
| 0.0782        | 42.0  | 105  | 0.4146          | 0.8808   |
| 0.0782        | 42.8  | 107  | 0.4380          | 0.8601   |
| 0.083         | 44.0  | 110  | 0.4579          | 0.8497   |
| 0.083         | 44.8  | 112  | 0.5234          | 0.8549   |
| 0.083         | 46.0  | 115  | 0.4053          | 0.8756   |
| 0.083         | 46.8  | 117  | 0.4724          | 0.8394   |
| 0.0741        | 48.0  | 120  | 0.4631          | 0.8549   |
| 0.0741        | 48.8  | 122  | 0.4351          | 0.8653   |
| 0.0741        | 50.0  | 125  | 0.4191          | 0.8756   |
| 0.0741        | 50.8  | 127  | 0.3772          | 0.8964   |
| 0.067         | 52.0  | 130  | 0.3960          | 0.8808   |
| 0.067         | 52.8  | 132  | 0.3749          | 0.8964   |
| 0.067         | 54.0  | 135  | 0.4395          | 0.8653   |
| 0.067         | 54.8  | 137  | 0.5284          | 0.8342   |
| 0.0632        | 56.0  | 140  | 0.3332          | 0.8808   |
| 0.0632        | 56.8  | 142  | 0.4342          | 0.8497   |
| 0.0632        | 58.0  | 145  | 0.3986          | 0.8756   |
| 0.0632        | 58.8  | 147  | 0.4771          | 0.8549   |
| 0.063         | 60.0  | 150  | 0.4505          | 0.8497   |
| 0.063         | 60.8  | 152  | 0.4023          | 0.8653   |
| 0.063         | 62.0  | 155  | 0.5208          | 0.8290   |
| 0.063         | 62.8  | 157  | 0.4915          | 0.8601   |
| 0.0571        | 64.0  | 160  | 0.4412          | 0.8756   |
| 0.0571        | 64.8  | 162  | 0.4554          | 0.8653   |
| 0.0571        | 66.0  | 165  | 0.4318          | 0.8653   |
| 0.0571        | 66.8  | 167  | 0.4317          | 0.8549   |
| 0.0608        | 68.0  | 170  | 0.4509          | 0.8653   |
| 0.0608        | 68.8  | 172  | 0.4176          | 0.8705   |
| 0.0608        | 70.0  | 175  | 0.5203          | 0.8394   |
| 0.0608        | 70.8  | 177  | 0.4375          | 0.8756   |
| 0.0478        | 72.0  | 180  | 0.4196          | 0.8601   |
| 0.0478        | 72.8  | 182  | 0.4744          | 0.8601   |
| 0.0478        | 74.0  | 185  | 0.4362          | 0.8808   |
| 0.0478        | 74.8  | 187  | 0.4804          | 0.8653   |
| 0.0519        | 76.0  | 190  | 0.4861          | 0.8446   |
| 0.0519        | 76.8  | 192  | 0.4605          | 0.8601   |
| 0.0519        | 78.0  | 195  | 0.4730          | 0.8394   |
| 0.0519        | 78.8  | 197  | 0.4650          | 0.8705   |
| 0.0553        | 80.0  | 200  | 0.3864          | 0.8860   |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3