File size: 7,796 Bytes
dcd1ec7 a4da6ea dcd1ec7 99c6ed4 b9f926f dcd1ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
license: apache-2.0
base_model: thezeivier/Grietas_10k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Grietas_10k-Fine-tuning
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Grietas_10k-Fine-tuning
This model is a fine-tuned version of [thezeivier/Grietas_10k](https://huggingface.co/thezeivier/Grietas_10k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3864
- Accuracy: 0.8860
## Model description
More information needed
## Intended uses & limitations
Este modelo ha sido diseñado para la clasificación de imágenes de infraestructuras en tres categorías:
- Sano (sin daños en la estructura de concreto).
- Fisura (daños leves e insignificantes en la estructura de concreto).
- Grieta (daños graves y de alto riesgo en la estructura de concreto).
Este modelo de visión artificial puede ser una herramienta valiosa para identificar posibles amenazas de colapso en estructuras de concreto en caso de futuros terremotos.
Limitaciones:
El modelo se ha entrenado exclusivamente con imágenes correspondientes a las tres categorías mencionadas anteriormente y no incorpora información sobre la distancia entre la cámara y la grieta capturada en la imagen.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
Los siguientes hiperparámetros fueron utilizados durante el entrenamiento:
- learning_rate (tasa de aprendizaje): 5e-05
- train_batch_size (tamaño del lote de entrenamiento): 80
- eval_batch_size (tamaño del lote de evaluación): 32
- seed (semilla): 42
- gradient_accumulation_steps (pasos de acumulación de gradientes): 4
- total_train_batch_size (tamaño total del lote de entrenamiento): 320
- optimizer (optimizador): Adam con betas=(0.9,0.999) y epsilon=1e-08
- lr_scheduler_type (tipo de programador de tasa de aprendizaje): lineal
- lr_scheduler_warmup_ratio (proporción de calentamiento del programador de tasa de aprendizaje): 0.1
- num_epochs (número de épocas): 100
Estos hiperparámetros fueron utilizados para entrenar el modelo y pueden ser configurados en la parte correspondiente del modelo para replicar las mismas condiciones de entrenamiento. Cada hiperparámetro tiene un impacto en cómo se ajusta el modelo a los datos y puede afectar su rendimiento y velocidad de entrenamiento, por lo que es importante seleccionarlos cuidadosamente.
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.8 | 2 | 1.3737 | 0.3679 |
| No log | 2.0 | 5 | 1.0234 | 0.6218 |
| No log | 2.8 | 7 | 0.8146 | 0.7254 |
| 1.0488 | 4.0 | 10 | 0.6621 | 0.7772 |
| 1.0488 | 4.8 | 12 | 0.6295 | 0.8031 |
| 1.0488 | 6.0 | 15 | 0.5390 | 0.8083 |
| 1.0488 | 6.8 | 17 | 0.4902 | 0.8290 |
| 0.4981 | 8.0 | 20 | 0.4645 | 0.8290 |
| 0.4981 | 8.8 | 22 | 0.4484 | 0.8497 |
| 0.4981 | 10.0 | 25 | 0.4543 | 0.8446 |
| 0.4981 | 10.8 | 27 | 0.4325 | 0.8394 |
| 0.3669 | 12.0 | 30 | 0.4210 | 0.8497 |
| 0.3669 | 12.8 | 32 | 0.4303 | 0.8342 |
| 0.3669 | 14.0 | 35 | 0.4170 | 0.8497 |
| 0.3669 | 14.8 | 37 | 0.3861 | 0.8601 |
| 0.2811 | 16.0 | 40 | 0.3629 | 0.8705 |
| 0.2811 | 16.8 | 42 | 0.3982 | 0.8653 |
| 0.2811 | 18.0 | 45 | 0.4492 | 0.8290 |
| 0.2811 | 18.8 | 47 | 0.4216 | 0.8342 |
| 0.2026 | 20.0 | 50 | 0.4614 | 0.8394 |
| 0.2026 | 20.8 | 52 | 0.4325 | 0.8446 |
| 0.2026 | 22.0 | 55 | 0.4755 | 0.8342 |
| 0.2026 | 22.8 | 57 | 0.4175 | 0.8394 |
| 0.1709 | 24.0 | 60 | 0.4175 | 0.8497 |
| 0.1709 | 24.8 | 62 | 0.4105 | 0.8446 |
| 0.1709 | 26.0 | 65 | 0.4140 | 0.8601 |
| 0.1709 | 26.8 | 67 | 0.4641 | 0.8394 |
| 0.1293 | 28.0 | 70 | 0.4214 | 0.8394 |
| 0.1293 | 28.8 | 72 | 0.3802 | 0.8808 |
| 0.1293 | 30.0 | 75 | 0.4875 | 0.8290 |
| 0.1293 | 30.8 | 77 | 0.3972 | 0.8705 |
| 0.1167 | 32.0 | 80 | 0.4853 | 0.8394 |
| 0.1167 | 32.8 | 82 | 0.4082 | 0.8549 |
| 0.1167 | 34.0 | 85 | 0.3917 | 0.8601 |
| 0.1167 | 34.8 | 87 | 0.3573 | 0.8653 |
| 0.1034 | 36.0 | 90 | 0.4312 | 0.8497 |
| 0.1034 | 36.8 | 92 | 0.4035 | 0.8497 |
| 0.1034 | 38.0 | 95 | 0.4413 | 0.8238 |
| 0.1034 | 38.8 | 97 | 0.4728 | 0.8446 |
| 0.0782 | 40.0 | 100 | 0.3977 | 0.8808 |
| 0.0782 | 40.8 | 102 | 0.3449 | 0.8912 |
| 0.0782 | 42.0 | 105 | 0.4146 | 0.8808 |
| 0.0782 | 42.8 | 107 | 0.4380 | 0.8601 |
| 0.083 | 44.0 | 110 | 0.4579 | 0.8497 |
| 0.083 | 44.8 | 112 | 0.5234 | 0.8549 |
| 0.083 | 46.0 | 115 | 0.4053 | 0.8756 |
| 0.083 | 46.8 | 117 | 0.4724 | 0.8394 |
| 0.0741 | 48.0 | 120 | 0.4631 | 0.8549 |
| 0.0741 | 48.8 | 122 | 0.4351 | 0.8653 |
| 0.0741 | 50.0 | 125 | 0.4191 | 0.8756 |
| 0.0741 | 50.8 | 127 | 0.3772 | 0.8964 |
| 0.067 | 52.0 | 130 | 0.3960 | 0.8808 |
| 0.067 | 52.8 | 132 | 0.3749 | 0.8964 |
| 0.067 | 54.0 | 135 | 0.4395 | 0.8653 |
| 0.067 | 54.8 | 137 | 0.5284 | 0.8342 |
| 0.0632 | 56.0 | 140 | 0.3332 | 0.8808 |
| 0.0632 | 56.8 | 142 | 0.4342 | 0.8497 |
| 0.0632 | 58.0 | 145 | 0.3986 | 0.8756 |
| 0.0632 | 58.8 | 147 | 0.4771 | 0.8549 |
| 0.063 | 60.0 | 150 | 0.4505 | 0.8497 |
| 0.063 | 60.8 | 152 | 0.4023 | 0.8653 |
| 0.063 | 62.0 | 155 | 0.5208 | 0.8290 |
| 0.063 | 62.8 | 157 | 0.4915 | 0.8601 |
| 0.0571 | 64.0 | 160 | 0.4412 | 0.8756 |
| 0.0571 | 64.8 | 162 | 0.4554 | 0.8653 |
| 0.0571 | 66.0 | 165 | 0.4318 | 0.8653 |
| 0.0571 | 66.8 | 167 | 0.4317 | 0.8549 |
| 0.0608 | 68.0 | 170 | 0.4509 | 0.8653 |
| 0.0608 | 68.8 | 172 | 0.4176 | 0.8705 |
| 0.0608 | 70.0 | 175 | 0.5203 | 0.8394 |
| 0.0608 | 70.8 | 177 | 0.4375 | 0.8756 |
| 0.0478 | 72.0 | 180 | 0.4196 | 0.8601 |
| 0.0478 | 72.8 | 182 | 0.4744 | 0.8601 |
| 0.0478 | 74.0 | 185 | 0.4362 | 0.8808 |
| 0.0478 | 74.8 | 187 | 0.4804 | 0.8653 |
| 0.0519 | 76.0 | 190 | 0.4861 | 0.8446 |
| 0.0519 | 76.8 | 192 | 0.4605 | 0.8601 |
| 0.0519 | 78.0 | 195 | 0.4730 | 0.8394 |
| 0.0519 | 78.8 | 197 | 0.4650 | 0.8705 |
| 0.0553 | 80.0 | 200 | 0.3864 | 0.8860 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|