File size: 13,789 Bytes
8a37faf
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d0dc26d6170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d0dc26d6200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d0dc26d6290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d0dc26d6320>", "_build": "<function ActorCriticPolicy._build at 0x7d0dc26d63b0>", "forward": "<function ActorCriticPolicy.forward at 0x7d0dc26d6440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d0dc26d64d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d0dc26d6560>", "_predict": "<function ActorCriticPolicy._predict at 0x7d0dc26d65f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d0dc26d6680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d0dc26d6710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d0dc26d67a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0dc267eb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714966333242425588, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM01yrwHsTQ/9sTEvZJZob7Dt7i9k/F9vQAAAAAAAAAAmpXAPOMqez8YVDM9jPWdvkg/ST1WsjU8AAAAAAAAAAAzFTy8rhWDunasn7tV1aYydo9VOmhttzoAAIA/AACAP03ll71cVxW60i+4upEmprQRUBK7PtjYOQAAgD8AAIA/AOr1PPZ3HLyokiU9b4FRPfjNbLzGFbg7AACAPwAAgD+ahbO8w+E1uudyDzoaLtw0jwGqulomKrkAAIA/AACAPzP5E7wKKzM8lFI3PcD/I76ySPE80vFAPQAAAAAAAAAAzYo8PatkUj8MfC29duSsvi+oIj2W0A68AAAAAAAAAABajYk9w0lMulaFOztxTzE3xbkSulGtLboAAIA/AACAP02/bb2u5Yu69+GiOi22oDV94h26AiG9uQAAgD8AAIA/wNaAPVyPUrqwKNo7OxcWOKLMaDuj6LA2AACAPwAAgD8zEa28lpquPxHoj76h08C+kghXOg36pr0AAAAAAAAAAM1WGz1cLz85xyyAOlkJZTaJy7u7rpSauQAAgD8AAIA/MzTIvHsiqLoCd1q6lSN7td/C3LmSGHo5AACAPwAAgD8magI+j8IuNyYUnLpgqCm3vQz6O2YNujkAAIA/AACAP+aceT1cAxW6foALPDFrmTXCpng6claZNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGA8S/KyOaSMAWyUTegDjAF0lEdAkZPCUornT3V9lChoBkdAZhIVNYbKimgHTegDaAhHQJGWjgrH2h91fZQoaAZHQGBY0qH446xoB03oA2gIR0CRour8BMi9dX2UKGgGR0BmEMU0vXbuaAdN6ANoCEdAkaZLX+VC5XV9lChoBkdAYe2b1AZ88mgHTegDaAhHQJGoIV1wHZ91fZQoaAZHQGQkuM2m52BoB03oA2gIR0CRqyGs3hn8dX2UKGgGR0BiqP9kz41xaAdN6ANoCEdAkbUQV0tAcHV9lChoBkdAYs1z3AVO9GgHTegDaAhHQJG9mdUbT+h1fZQoaAZHQGF0TbnHNotoB03oA2gIR0CRvcfzz3AVdX2UKGgGR0BhS4zBRAKOaAdN6ANoCEdAkb8niaRZEHV9lChoBkdAZJROJLuhK2gHTegDaAhHQJHBT8tPHkt1fZQoaAZHQGKX6zE74i5oB03oA2gIR0CRwohTOxB3dX2UKGgGR0BiJagbp/wzaAdN6ANoCEdAkcL7fk3juXV9lChoBkdAY8XjjJdSl2gHTegDaAhHQJHGmwY+B6N1fZQoaAZHQC8umvW6K+BoB0v/aAhHQJHKtw6ySmt1fZQoaAZHQGGSGGEf1YhoB03oA2gIR0CR3n/xUedTdX2UKGgGR0Bip/HYHxBmaAdN6ANoCEdAkd7D8cdYGXV9lChoBkdAY+YelKsdUGgHTegDaAhHQJHgF30PH1h1fZQoaAZHQGXNPPkaMrFoB03oA2gIR0CR4sGbTc7AdX2UKGgGR0BGH+q7yxzJaAdL5mgIR0CR6MuyeI2wdX2UKGgGR0BjeMjAzpHJaAdN6ANoCEdAkfEdu+AVf3V9lChoBkdAWXoCFK02L2gHTegDaAhHQJH0m6iCaql1fZQoaAZHQFySelbeMydoB03oA2gIR0CR9owFC9h7dX2UKGgGR0BlGFpfx+a0aAdN6ANoCEdAkfmlNtZV43V9lChoBkdAX/RFy7wrlWgHTegDaAhHQJIFQenyd4F1fZQoaAZHQGBPM36yjYZoB03oA2gIR0CSDN1WKdhBdX2UKGgGR0BiwyL876pHaAdN6ANoCEdAkg4Mny/bkHV9lChoBkdAZIeUIsyzomgHTegDaAhHQJIQa3LFGXp1fZQoaAZHQFzGT3Zf2K5oB03oA2gIR0CSEeMjeKsNdX2UKGgGR0BeLxYq5LAYaAdN6ANoCEdAkhJlJL/S6XV9lChoBkdAX8AMXrMTvmgHTegDaAhHQJIWmskpqh11fZQoaAZHQGNUGcOLBKtoB03oA2gIR0CSMY/ag261dX2UKGgGR0BhxXm3fAKwaAdN6ANoCEdAkjHZLmITG3V9lChoBkdAX2zItDlYEGgHTegDaAhHQJIzIpgCwKV1fZQoaAZHQGBls72criFoB03oA2gIR0CSNanPE87qdX2UKGgGR0BhIPSjQAuJaAdN6ANoCEdAkjrWjO9nLHV9lChoBkdAY5LRkVeruWgHTegDaAhHQJJAUjnmq5t1fZQoaAZHQGCYLNOdoWZoB03oA2gIR0CSQ3Xu3MINdX2UKGgGR0Bho/BzmwJPaAdN6ANoCEdAkkU5uyeI23V9lChoBkdAYk1drwe/6GgHTegDaAhHQJJIHNQj2SN1fZQoaAZHQGJc+kpI+W5oB03oA2gIR0CSVVipNsWPdX2UKGgGR0Bh7nfuTibVaAdN6ANoCEdAkl0z+rELpnV9lChoBkdAZGeI1LrX2GgHTegDaAhHQJJeapPykKx1fZQoaAZHQGNnQGGEf1ZoB03oA2gIR0CSYMn2ZiNLdX2UKGgGR0Bj8utr9EThaAdN6ANoCEdAkmJD0pVjqnV9lChoBkdAW/UjVx0dR2gHTegDaAhHQJJiws9SuQp1fZQoaAZHQF5CzSkTHsFoB03oA2gIR0CSZxq7AckudX2UKGgGR0Bg2lPP9kz5aAdN6ANoCEdAkm7ObZvkzXV9lChoBkdAYlNAu7HyVmgHTegDaAhHQJJvGfEn9eh1fZQoaAZHQGXxMguAZsNoB03oA2gIR0CSg/obGWD6dX2UKGgGR0BlHTFfiPyTaAdN6ANoCEdAkobwq7ROUXV9lChoBkdAYhnArxy4nWgHTegDaAhHQJKMxdMTN+t1fZQoaAZHQF+zh0Qsf7toB03oA2gIR0CSkoP8hs68dX2UKGgGR0BjiekFfReDaAdN6ANoCEdAkpXJFb3XZ3V9lChoBkdAZKoyvcJtzmgHTegDaAhHQJKXkMb3oLZ1fZQoaAZHQGXs4rBj4HpoB03oA2gIR0CSmmjyFwkxdX2UKGgGR0BhNnZ00WM1aAdN6ANoCEdAkqTMfvF3p3V9lChoBkdAY9DFZxJd0WgHTegDaAhHQJKscmiQDFJ1fZQoaAZHQGNMlaB7NStoB03oA2gIR0CSrd6vaDf4dX2UKGgGR0Bj+lG0/nnuaAdN6ANoCEdAkrDPnbItDnV9lChoBkdAZJ2LbYbsGGgHTegDaAhHQJKyvqPfbbl1fZQoaAZHQGYn86/7BO5oB03oA2gIR0CSs1NQj2SMdX2UKGgGR0BBgHIp6QeWaAdNCAFoCEdAkraJQDV6NXV9lChoBkdAYT5fVI7NjmgHTegDaAhHQJK3aDujRD11fZQoaAZHQGWlYUeuFHtoB03oA2gIR0CSviDtgKF7dX2UKGgGR0BkB69h7VriaAdN6ANoCEdAkr5hEBsAN3V9lChoBkdAY323ZPEbYWgHTegDaAhHQJK/pTCLuQZ1fZQoaAZHQGBR611GLDRoB03oA2gIR0CS0y5Dqnm8dX2UKGgGR0BgFzzK9wm3aAdN6ANoCEdAktgN7WuoxnV9lChoBkdAY0lBeHBUJmgHTegDaAhHQJLdxVPva111fZQoaAZHQF1HivgWJrNoB03oA2gIR0CS4ZGu9vjwdX2UKGgGR0BjEu7xusLfaAdN6ANoCEdAkuPHKfWc0HV9lChoBkdAYygTviLl3mgHTegDaAhHQJLmafoRqXZ1fZQoaAZHQGUU/FzdUKloB03oA2gIR0CS96+jua4MdX2UKGgGR0Bh2xSzgMtsaAdN6ANoCEdAkvjEA5q/NHV9lChoBkdAZHGfr8iwCGgHTegDaAhHQJL6/S8an751fZQoaAZHQGB/Uaya/h5oB03oA2gIR0CS/GPoV2zOdX2UKGgGR0BkPfwiJO32aAdN6ANoCEdAkvzcCxNZeXV9lChoBkdAZXo//NqxkmgHTegDaAhHQJMAFl4C6pZ1fZQoaAZHQGUy7rLQokRoB03oA2gIR0CTAOOPvKEGdX2UKGgGR0BiEGPBBRhuaAdN6ANoCEdAkweVUVBUrHV9lChoBkdAZLsRzRx95WgHTegDaAhHQJMH18Sf16F1fZQoaAZHQGGQxvvSc9ZoB03oA2gIR0CTCSgwoLG8dX2UKGgGR0BjoV4zJp35aAdN6ANoCEdAkx85Etuk13V9lChoBkdAYawC7sfJWGgHTegDaAhHQJMkibUgB911fZQoaAZHQGMvmcvugHxoB03oA2gIR0CTKi0pVjqfdX2UKGgGR0BjTMyi22G7aAdN6ANoCEdAky1Q9FF2FHV9lChoBkdAZxaQQtjCpGgHTegDaAhHQJMvELBsQ/Z1fZQoaAZHQGKUv0AcT8JoB03oA2gIR0CTMdGp++dtdX2UKGgGR0BjjxGpda+waAdN6ANoCEdAk0S/S+g133V9lChoBkdAY/n/G2kSEmgHTegDaAhHQJNF3CyhSLt1fZQoaAZHQGQtfVy3kPtoB03oA2gIR0CTSAF0xM37dX2UKGgGR0BnxtPi1iOOaAdN6ANoCEdAk0lLApKBd3V9lChoBkdAZ1ZCcf/3nWgHTegDaAhHQJNJvZBcAzZ1fZQoaAZHQGGEedTYNAloB03oA2gIR0CTTNgIyCWedX2UKGgGR0Bi09ihFmWdaAdN6ANoCEdAk02oXoC+13V9lChoBkdAY4GqWC2+f2gHTegDaAhHQJNUQ75mAb11fZQoaAZHQGIS5Huqm0poB03oA2gIR0CTVIP/JeVtdX2UKGgGR0Bofw2GZeAvaAdN6ANoCEdAk1XNfsu3+nV9lChoBkdAZZTjqfOD8WgHTegDaAhHQJNYX2lEZzh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}