File size: 2,772 Bytes
8178adc a7a342f 8178adc a7a342f 3df3d70 8178adc c1a07c8 8178adc ff2dfe4 8178adc 3df3d70 c1a07c8 6dea6c1 c1a07c8 3df3d70 8178adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: mit
language:
- ja
tags:
- generated_from_trainer
- ja_qu_ad
- bert
datasets: SkelterLabsInc/JaQuAD
widget:
- text: どこへ出かけた?
context: 2015年9月1日、私は横浜へ車で出かけました。映画を観た後に中華街まで電車で行き、昼ご飯は重慶飯店で中華フルコースを食べました。
model-index:
- name: xlm-roberta-base-finetuned-JaQuAD
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-JaQuAD
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7495
## Model description
More information needed
## Intended uses
```python
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model_name = "thkkvui/xlm-roberta-base-finetuned-JaQuAD"
model = (AutoModelForQuestionAnswering.from_pretrained(model_name))
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "2015年9月1日、私は横浜へ車で出かけました。映画を観た後に中華街まで電車で行き、昼ご飯は重慶飯店で中華フルコースを食べました。"
questions= ["どこへ出かけた?", "電車に乗る前は何をしていた?", "重慶飯店で何を食べた?", "いつ横浜に出かけた?"]
for question in questions:
inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
answer_start = torch.argmax(output.start_logits)
answer_end = torch.argmax(output.end_logits)
answer_tokens = inputs.input_ids[0, answer_start : answer_end + 1]
answer = tokenizer.decode(answer_tokens)
print(f"質問: {question} -> 回答: {answer}")
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8661 | 1.0 | 1985 | 0.8036 |
| 0.5348 | 2.0 | 3970 | 0.7495 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3
|