File size: 2,589 Bytes
8cb796b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584d91f
8cb796b
 
 
 
 
 
 
 
 
584d91f
 
8cb796b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584d91f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb796b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-base_cola_dense_epochs-3
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: cola
      split: validation
      args: cola
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8283796740172579
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base_cola_dense_epochs-3

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5042
- Accuracy: 0.8284

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5796        | 0.19  | 50   | 0.5780          | 0.6913   |
| 0.4821        | 0.37  | 100  | 0.6683          | 0.7546   |
| 0.4703        | 0.56  | 150  | 0.4976          | 0.8035   |
| 0.4252        | 0.75  | 200  | 0.4958          | 0.8150   |
| 0.4915        | 0.93  | 250  | 0.5360          | 0.8044   |
| 0.3812        | 1.12  | 300  | 0.4645          | 0.8322   |
| 0.3603        | 1.31  | 350  | 0.4788          | 0.8293   |
| 0.3336        | 1.49  | 400  | 0.5135          | 0.8245   |
| 0.4157        | 1.68  | 450  | 0.5311          | 0.8322   |
| 0.4094        | 1.87  | 500  | 0.5042          | 0.8284   |
| 0.2836        | 2.05  | 550  | 0.5277          | 0.8313   |
| 0.2993        | 2.24  | 600  | 0.5515          | 0.8341   |
| 0.2843        | 2.43  | 650  | 0.5195          | 0.8332   |
| 0.2288        | 2.61  | 700  | 0.5129          | 0.8332   |
| 0.3165        | 2.8   | 750  | 0.5126          | 0.8360   |
| 0.2717        | 2.99  | 800  | 0.5083          | 0.8332   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1