End of training
Browse files- README.md +95 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: t5-base_cola_mare_ar16_ex32_size-32_epochs-5_collected-stats
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: cola
|
20 |
+
split: validation
|
21 |
+
args: cola
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8178331735378715
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# t5-base_cola_mare_ar16_ex32_size-32_epochs-5_collected-stats
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4754
|
36 |
+
- Accuracy: 0.8178
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 0
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 20
|
62 |
+
- num_epochs: 5
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.5704 | 0.19 | 50 | 0.5500 | 0.6913 |
|
69 |
+
| 0.4592 | 0.37 | 100 | 0.5609 | 0.7814 |
|
70 |
+
| 0.4641 | 0.56 | 150 | 0.4854 | 0.8121 |
|
71 |
+
| 0.4015 | 0.75 | 200 | 0.4908 | 0.8063 |
|
72 |
+
| 0.4365 | 0.93 | 250 | 0.5368 | 0.8063 |
|
73 |
+
| 0.3397 | 1.12 | 300 | 0.4968 | 0.8255 |
|
74 |
+
| 0.3187 | 1.31 | 350 | 0.4496 | 0.8236 |
|
75 |
+
| 0.3034 | 1.49 | 400 | 0.4710 | 0.8198 |
|
76 |
+
| 0.3725 | 1.68 | 450 | 0.5318 | 0.8236 |
|
77 |
+
| 0.4025 | 1.87 | 500 | 0.4754 | 0.8178 |
|
78 |
+
| 0.3018 | 2.05 | 550 | 0.5268 | 0.8274 |
|
79 |
+
| 0.3073 | 2.24 | 600 | 0.5359 | 0.8313 |
|
80 |
+
| 0.2784 | 2.43 | 650 | 0.4787 | 0.8332 |
|
81 |
+
| 0.2271 | 2.61 | 700 | 0.4870 | 0.8284 |
|
82 |
+
| 0.3142 | 2.8 | 750 | 0.5267 | 0.8360 |
|
83 |
+
| 0.3161 | 2.99 | 800 | 0.5216 | 0.8313 |
|
84 |
+
| 0.2491 | 3.17 | 850 | 0.5075 | 0.8332 |
|
85 |
+
| 0.3027 | 3.36 | 900 | 0.5142 | 0.8313 |
|
86 |
+
| 0.307 | 3.54 | 950 | 0.5031 | 0.8360 |
|
87 |
+
| 0.3338 | 3.73 | 1000 | 0.5035 | 0.8351 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.34.1
|
93 |
+
- Pytorch 2.1.0+cu118
|
94 |
+
- Datasets 2.14.6
|
95 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1385560510
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a4c6c67ac979209923d4701d7f8f5f7836131250a8e35d26c199d00c7f8e4de
|
3 |
size 1385560510
|