File size: 2,229 Bytes
27e8975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02147bf
27e8975
02147bf
27e8975
 
 
 
 
 
 
 
 
 
 
 
 
02147bf
27e8975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02147bf
 
 
 
 
 
 
 
 
 
27e8975
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-base_cola_moe_ex9_sp0_05_ar0_0_mare_mlp
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: cola
      split: validation
      args: cola
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base_cola_moe_ex9_sp0_05_ar0_0_mare_mlp

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3499
- Accuracy: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.387         | 0.09  | 25   | 0.5450          | 0.8293   |
| 0.2475        | 0.19  | 50   | 0.5868          | 0.8188   |
| 0.3632        | 0.28  | 75   | 0.4910          | 0.8178   |
| 0.3274        | 0.37  | 100  | 0.4657          | 0.8169   |
| 0.3411        | 0.47  | 125  | 0.5840          | 0.8188   |
| 0.3016        | 0.56  | 150  | 0.5476          | 0.8169   |
| 0.2658        | 0.65  | 175  | 0.5822          | 0.8130   |
| 0.3412        | 0.75  | 200  | 0.5156          | 0.8188   |
| 0.2783        | 0.84  | 225  | 0.4850          | 0.8245   |
| 0.3596        | 0.93  | 250  | 0.5406          | 0.8284   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.11.6