End of training
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: t5-base_rte_dense_sp0_ar0
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: rte
|
20 |
+
split: validation
|
21 |
+
args: rte
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.0
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# t5-base_rte_dense_sp0_ar0
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9086
|
36 |
+
- Accuracy: 0.0
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 1
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 16
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 20
|
64 |
+
- num_epochs: 5
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 0.6787 | 0.16 | 25 | 0.6850 | 0.5307 |
|
71 |
+
| 0.7034 | 0.32 | 50 | 0.6689 | 0.5704 |
|
72 |
+
| 0.6478 | 0.48 | 75 | 0.6356 | 0.6570 |
|
73 |
+
| 0.6889 | 0.64 | 100 | 0.6188 | 0.6859 |
|
74 |
+
| 0.588 | 0.8 | 125 | 0.5892 | 0.6859 |
|
75 |
+
| 0.5989 | 0.96 | 150 | 0.6802 | 0.6606 |
|
76 |
+
| 0.5392 | 1.12 | 175 | 0.5836 | 0.7329 |
|
77 |
+
| 0.5497 | 1.28 | 200 | 0.6758 | 0.6715 |
|
78 |
+
| 0.5567 | 1.44 | 225 | 0.7056 | 0.6643 |
|
79 |
+
| 0.5063 | 1.6 | 250 | 0.5617 | 0.7401 |
|
80 |
+
| 0.5644 | 1.76 | 275 | 0.5737 | 0.7256 |
|
81 |
+
| 0.6018 | 1.92 | 300 | 0.6179 | 0.7112 |
|
82 |
+
| 0.4554 | 2.08 | 325 | 0.5339 | 0.7509 |
|
83 |
+
| 0.3778 | 2.24 | 350 | 0.5495 | 0.7726 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.34.1
|
89 |
+
- Pytorch 2.0.1+cu117
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.14.1
|