update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: checkpoints2
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# checkpoints2
|
13 |
+
|
14 |
+
This model was trained from scratch on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.1593
|
17 |
+
- Wer: 0.0579
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0003
|
37 |
+
- train_batch_size: 3
|
38 |
+
- eval_batch_size: 2
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 2
|
41 |
+
- total_train_batch_size: 6
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 500
|
45 |
+
- num_epochs: 50
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
52 |
+
| 0.2075 | 1.0 | 124 | 0.1170 | 0.0525 |
|
53 |
+
| 0.0978 | 2.0 | 248 | 0.0875 | 0.0507 |
|
54 |
+
| 0.046 | 3.0 | 372 | 0.1017 | 0.0534 |
|
55 |
+
| 0.031 | 4.0 | 496 | 0.1167 | 0.0543 |
|
56 |
+
| 0.0353 | 5.0 | 620 | 0.1194 | 0.0534 |
|
57 |
+
| 0.0345 | 6.0 | 744 | 0.1217 | 0.0597 |
|
58 |
+
| 0.0248 | 7.0 | 868 | 0.1366 | 0.0633 |
|
59 |
+
| 0.02 | 8.0 | 992 | 0.1193 | 0.0597 |
|
60 |
+
| 0.0339 | 9.0 | 1116 | 0.1341 | 0.0624 |
|
61 |
+
| 0.0172 | 10.0 | 1240 | 0.1200 | 0.0570 |
|
62 |
+
| 0.022 | 11.0 | 1364 | 0.1323 | 0.0688 |
|
63 |
+
| 0.0221 | 12.0 | 1488 | 0.1219 | 0.0543 |
|
64 |
+
| 0.0168 | 13.0 | 1612 | 0.1567 | 0.0769 |
|
65 |
+
| 0.0145 | 14.0 | 1736 | 0.1337 | 0.0606 |
|
66 |
+
| 0.0114 | 15.0 | 1860 | 0.1299 | 0.0688 |
|
67 |
+
| 0.0209 | 16.0 | 1984 | 0.1266 | 0.0661 |
|
68 |
+
| 0.0183 | 17.0 | 2108 | 0.1412 | 0.0697 |
|
69 |
+
| 0.0135 | 18.0 | 2232 | 0.1394 | 0.0670 |
|
70 |
+
| 0.0101 | 19.0 | 2356 | 0.1429 | 0.0724 |
|
71 |
+
| 0.0125 | 20.0 | 2480 | 0.1296 | 0.0733 |
|
72 |
+
| 0.0102 | 21.0 | 2604 | 0.1233 | 0.0697 |
|
73 |
+
| 0.006 | 22.0 | 2728 | 0.1368 | 0.0769 |
|
74 |
+
| 0.0058 | 23.0 | 2852 | 0.1225 | 0.0624 |
|
75 |
+
| 0.0046 | 24.0 | 2976 | 0.1220 | 0.0606 |
|
76 |
+
| 0.0081 | 25.0 | 3100 | 0.1425 | 0.0751 |
|
77 |
+
| 0.0088 | 26.0 | 3224 | 0.1311 | 0.0670 |
|
78 |
+
| 0.0055 | 27.0 | 3348 | 0.1286 | 0.0597 |
|
79 |
+
| 0.0052 | 28.0 | 3472 | 0.1228 | 0.0561 |
|
80 |
+
| 0.0026 | 29.0 | 3596 | 0.1437 | 0.0606 |
|
81 |
+
| 0.0052 | 30.0 | 3720 | 0.1430 | 0.0679 |
|
82 |
+
| 0.0096 | 31.0 | 3844 | 0.1458 | 0.0733 |
|
83 |
+
| 0.0051 | 32.0 | 3968 | 0.1393 | 0.0606 |
|
84 |
+
| 0.0031 | 33.0 | 4092 | 0.1441 | 0.0633 |
|
85 |
+
| 0.0042 | 34.0 | 4216 | 0.1539 | 0.0679 |
|
86 |
+
| 0.0032 | 35.0 | 4340 | 0.1496 | 0.0661 |
|
87 |
+
| 0.0035 | 36.0 | 4464 | 0.1486 | 0.0615 |
|
88 |
+
| 0.0017 | 37.0 | 4588 | 0.1489 | 0.0643 |
|
89 |
+
| 0.0021 | 38.0 | 4712 | 0.1583 | 0.0615 |
|
90 |
+
| 0.0031 | 39.0 | 4836 | 0.1544 | 0.0597 |
|
91 |
+
| 0.0021 | 40.0 | 4960 | 0.1638 | 0.0633 |
|
92 |
+
| 0.0017 | 41.0 | 5084 | 0.1630 | 0.0633 |
|
93 |
+
| 0.0013 | 42.0 | 5208 | 0.1618 | 0.0561 |
|
94 |
+
| 0.0015 | 43.0 | 5332 | 0.1656 | 0.0597 |
|
95 |
+
| 0.0015 | 44.0 | 5456 | 0.1662 | 0.0588 |
|
96 |
+
| 0.0018 | 45.0 | 5580 | 0.1594 | 0.0597 |
|
97 |
+
| 0.0007 | 46.0 | 5704 | 0.1603 | 0.0597 |
|
98 |
+
| 0.0005 | 47.0 | 5828 | 0.1614 | 0.0615 |
|
99 |
+
| 0.0011 | 48.0 | 5952 | 0.1599 | 0.0579 |
|
100 |
+
| 0.0007 | 49.0 | 6076 | 0.1601 | 0.0579 |
|
101 |
+
| 0.0009 | 50.0 | 6200 | 0.1593 | 0.0579 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.17.0
|
107 |
+
- Pytorch 1.11.0+cu113
|
108 |
+
- Datasets 1.18.3
|
109 |
+
- Tokenizers 0.12.1
|