--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3612750885478158 pipeline_tag: automatic-speech-recognition --- # Whisper tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6491 - Wer Ortho: 0.3572 - Wer: 0.3613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 8 - training_steps: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0569 | 0.2679 | 15 | 0.6113 | 0.3337 | 0.3294 | | 0.0364 | 0.5357 | 30 | 0.6443 | 0.3603 | 0.3554 | | 0.0916 | 0.8036 | 45 | 0.6491 | 0.3572 | 0.3613 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1