File size: 1,217 Bytes
579a814
 
 
ee960b9
23cc088
60fe460
7652df9
 
88aa751
7652df9
e018348
7652df9
 
 
2cf9ce2
7652df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
license: apache-2.0
base_model:
- rhymes-ai/Aria-sequential_mlp
- rhymes-ai/Aria
pipeline_tag: image-text-to-text
---
# Aria-sequential_mlp-FP8-dynamic
#### Warning: There is no inference code for transformers/vLLM yet!

FP8-Dynamic quantization from [Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) made with [LLM Compressor](https://github.com/vllm-project/llm-compressor).

Generated with the following code:

```python
from transformers import AutoProcessor, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

model_name = "rhymes-ai/Aria-sequential_mlp"

model = SparseAutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)

recipe = QuantizationModifier(
    targets="Linear",
    scheme="FP8_DYNAMIC",
    ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_tower.*"],
)

folder = model_name.split("/")[1] + "-FP8-Dynamic"
oneshot(model=model, recipe=recipe, output_dir=folder)
processor.save_pretrained(folder)
```