File size: 6,767 Bytes
5703f94 4fb2d86 5703f94 35dc5c4 76cc5d7 35dc5c4 76cc5d7 35dc5c4 3863dad 35dc5c4 baf3ffd 35dc5c4 76cc5d7 35dc5c4 76cc5d7 2bd2578 76cc5d7 2bd2578 f72fab5 76cc5d7 35dc5c4 3863dad 35dc5c4 e1cfd4f 6743dc8 e1cfd4f 35dc5c4 5703f94 09fc719 5703f94 1668012 5703f94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: cc-by-nc-4.0
library_name: diffusers
tags:
- text-to-image
- stable-diffusion
- diffusion distillation
---
# DMD2 Model Card
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63363b864067f020756275b7/YhssMfS_1e6q5fHKh9qrc.jpeg)
> [**Improved Distribution Matching Distillation for Fast Image Synthesis**](https://arxiv.org/abs/2405.14867),
> Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Frédo Durand, William T. Freeman
## Contact
Feel free to contact us if you have any questions about the paper!
Tianwei Yin [[email protected]](mailto:[email protected])
## Usage
We can use the standard diffuser pipeline:
#### 4-step UNet generation
```python
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
# Load model.
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name), map_location="cuda"))
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt="a photo of a cat"
# LCMScheduler's default timesteps are different from the one we used for training
image=pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0, timesteps=[999, 749, 499, 249]).images[0]
```
#### 4-step LoRA generation
```python
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_lora_fp16.safetensors"
# Load model.
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name))
pipe.fuse_lora(lora_scale=1.0) # we might want to make the scale smaller for community models
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt="a photo of a cat"
# LCMScheduler's default timesteps are different from the one we used for training
image=pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0, timesteps=[999, 749, 499, 249]).images[0]
```
#### 1-step UNet generation
```python
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_1step_unet_fp16.bin"
# Load model.
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name), map_location="cuda"))
pipe = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
prompt="a photo of a cat"
image=pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[399]).images[0]
```
#### 4-step T2I Adapter
```python
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, AutoencoderKL, UNet2DConditionModel, LCMScheduler
from diffusers.utils import load_image, make_image_grid
from controlnet_aux.canny import CannyDetector
from huggingface_hub import hf_hub_download
import torch
# load adapter
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda")
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
# Load model.
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name), map_location="cuda"))
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
base_model_id, unet=unet, vae=vae, adapter=adapter, torch_dtype=torch.float16, variant="fp16",
).to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
canny_detector = CannyDetector()
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_canny.jpg"
image = load_image(url)
# Detect the canny map in low resolution to avoid high-frequency details
image = canny_detector(image, detect_resolution=384, image_resolution=1024)#.resize((1024, 1024))
prompt = "Mystical fairy in real, magic, 4k picture, high quality"
gen_images = pipe(
prompt=prompt,
image=image,
num_inference_steps=4,
guidance_scale=0,
adapter_conditioning_scale=0.8,
adapter_conditioning_factor=0.5,
timesteps=[999, 749, 499, 249]
).images[0]
gen_images.save('out_canny.png')
```
For more information, please refer to the [code repository](https://github.com/tianweiy/DMD2)
## License
Improved Distribution Matching Distillation is released under [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
## Citation
If you find DMD2 useful or relevant to your research, please kindly cite our papers:
```bib
@article{yin2024improved,
title={Improved Distribution Matching Distillation for Fast Image Synthesis},
author={Yin, Tianwei and Gharbi, Micha{\"e}l and Park, Taesung and Zhang, Richard and Shechtman, Eli and Durand, Fredo and Freeman, William T},
journal={arXiv:2405.14867},
year={2024}
}
@inproceedings{yin2024onestep,
title={One-step Diffusion with Distribution Matching Distillation},
author={Yin, Tianwei and Gharbi, Micha{\"e}l and Zhang, Richard and Shechtman, Eli and Durand, Fr{\'e}do and Freeman, William T and Park, Taesung},
booktitle={CVPR},
year={2024}
}
```
## Acknowledgments
This work was done while Tianwei Yin was a full-time student at MIT. It was developed based on our reimplementation of the original DMD paper. This work was supported by the National Science Foundation under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/), by NSF Grant 2105819, by NSF CISE award 1955864, and by funding from Google, GIST, Amazon, and Quanta Computer. |