Nguyen Tien commited on
Commit
d0ef506
1 Parent(s): 2045b83

Upload modeling_mpt.py

Browse files
Files changed (1) hide show
  1. modeling_mpt.py +327 -0
modeling_mpt.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple, flexible implementation of a GPT model.
2
+
3
+ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
+ """
5
+ import math
6
+ import warnings
7
+ from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from transformers import PreTrainedModel, PreTrainedTokenizerBase
12
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
13
+ from .attention import attn_bias_shape, build_attn_bias
14
+ from .blocks import MPTBlock
15
+ from .custom_embedding import SharedEmbedding
16
+ from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
17
+ from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
18
+ from .ffn import MPTMLP as MPTMLP
19
+ from .ffn import build_ffn as build_ffn
20
+ from .norm import NORM_CLASS_REGISTRY
21
+ from .configuration_mpt import MPTConfig
22
+ from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
23
+ from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
24
+ from .meta_init_context import init_empty_weights
25
+ from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
26
+ try:
27
+ from .flash_attn_triton import flash_attn_func as flash_attn_func
28
+ except:
29
+ pass
30
+ import logging
31
+ log = logging.getLogger(__name__)
32
+
33
+ class MPTPreTrainedModel(PreTrainedModel):
34
+ config_class = MPTConfig
35
+ base_model_prefix = 'model'
36
+ _no_split_modules = ['MPTBlock']
37
+
38
+ class MPTModel(MPTPreTrainedModel):
39
+
40
+ def __init__(self, config: MPTConfig):
41
+ config._validate_config()
42
+ super().__init__(config)
43
+ self.attn_impl = config.attn_config['attn_impl']
44
+ self.prefix_lm = config.attn_config['prefix_lm']
45
+ self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
46
+ self.alibi = config.attn_config['alibi']
47
+ self.alibi_bias_max = config.attn_config['alibi_bias_max']
48
+ self.learned_pos_emb = config.learned_pos_emb
49
+ if config.init_device == 'mixed':
50
+ if dist.get_local_rank() == 0:
51
+ config.init_device = 'cpu'
52
+ else:
53
+ config.init_device = 'meta'
54
+ if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
55
+ norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
56
+ raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
57
+ norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
58
+ self.embedding_fraction = config.embedding_fraction
59
+ self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
60
+ if self.learned_pos_emb:
61
+ self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
62
+ self.emb_drop = nn.Dropout(config.emb_pdrop)
63
+ self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
64
+ self.norm_f = norm_class(config.d_model, device=config.init_device)
65
+ if config.init_device != 'meta':
66
+ log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
67
+ self.apply(self.param_init_fn)
68
+ self.is_causal = not self.prefix_lm
69
+ self._attn_bias_initialized = False
70
+ self.attn_bias = None
71
+ self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
72
+ if config.no_bias:
73
+ for module in self.modules():
74
+ if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
75
+ log.info(f'Removing bias ({module.bias}) from {module}.')
76
+ module.register_parameter('bias', None)
77
+ if hasattr(module, 'use_bias'):
78
+ log.info(f'Setting use_bias=False for {module}.')
79
+ module.use_bias = False
80
+ log.debug(self)
81
+ log.debug(f"Using {self.config.init_config['name']} initialization.")
82
+
83
+ def get_input_embeddings(self) -> nn.Embedding:
84
+ return self.wte
85
+
86
+ def set_input_embeddings(self, value: nn.Embedding) -> None:
87
+ self.wte = value
88
+
89
+ @torch.no_grad()
90
+ def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
91
+ if not self._attn_bias_initialized:
92
+ if self.attn_bias_shape:
93
+ self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
94
+ self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
95
+ self._attn_bias_initialized = True
96
+ if self.attn_impl == 'flash':
97
+ return (self.attn_bias, attention_mask)
98
+ if self.attn_bias is not None:
99
+ self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
100
+ attn_bias = self.attn_bias
101
+ if self.prefix_lm:
102
+ assert isinstance(attn_bias, torch.Tensor)
103
+ assert isinstance(prefix_mask, torch.Tensor)
104
+ attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
105
+ if self.attn_uses_sequence_id and sequence_id is not None:
106
+ assert isinstance(attn_bias, torch.Tensor)
107
+ attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
108
+ if attention_mask is not None:
109
+ s_k = attention_mask.shape[-1]
110
+ if attn_bias is None:
111
+ attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
112
+ else:
113
+ _s_k = max(0, attn_bias.size(-1) - s_k)
114
+ attn_bias = attn_bias[:, :, :, _s_k:]
115
+ if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
116
+ raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
117
+ min_val = torch.finfo(attn_bias.dtype).min
118
+ attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
119
+ return (attn_bias, None)
120
+
121
+ def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
122
+ (s_k, s_q) = attn_bias.shape[-2:]
123
+ if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
124
+ raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
125
+ seq_len = prefix_mask.shape[-1]
126
+ if seq_len > self.config.max_seq_len:
127
+ raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
128
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
129
+ causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
130
+ prefix = prefix_mask.view(-1, 1, 1, seq_len)
131
+ cannot_attend = ~torch.logical_or(causal, prefix.bool())
132
+ min_val = torch.finfo(attn_bias.dtype).min
133
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
134
+ return attn_bias
135
+
136
+ def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor) -> torch.Tensor:
137
+ seq_len = sequence_id.shape[-1]
138
+ if seq_len > self.config.max_seq_len:
139
+ raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
140
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
141
+ cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
142
+ min_val = torch.finfo(attn_bias.dtype).min
143
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
144
+ return attn_bias
145
+
146
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
147
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
148
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
149
+ if attention_mask is not None:
150
+ attention_mask = attention_mask.bool()
151
+ if prefix_mask is not None:
152
+ prefix_mask = prefix_mask.bool()
153
+ if not return_dict:
154
+ raise NotImplementedError('return_dict False is not implemented yet for MPT')
155
+ if output_attentions:
156
+ if self.attn_impl != 'torch':
157
+ raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
158
+ if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
159
+ raise NotImplementedError('MPT does not support training with left padding.')
160
+ if self.prefix_lm and prefix_mask is None:
161
+ raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
162
+ if inputs_embeds is not None:
163
+ raise NotImplementedError('inputs_embeds is not implemented for MPT.')
164
+ if self.training:
165
+ if self.attn_uses_sequence_id and sequence_id is None:
166
+ raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
167
+ elif self.attn_uses_sequence_id is False and sequence_id is not None:
168
+ warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
169
+ S = input_ids.size(1)
170
+ assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
171
+ tok_emb = self.wte(input_ids)
172
+ if self.learned_pos_emb:
173
+ past_position = 0
174
+ if past_key_values is not None:
175
+ if len(past_key_values) != self.config.n_layers:
176
+ raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
177
+ past_position = past_key_values[0][0].size(1)
178
+ if self.attn_impl == 'torch':
179
+ past_position = past_key_values[0][0].size(3)
180
+ if S + past_position > self.config.max_seq_len:
181
+ raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
182
+ pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
183
+ if attention_mask is not None:
184
+ pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
185
+ pos_emb = self.wpe(pos)
186
+ x = tok_emb + pos_emb
187
+ else:
188
+ x = tok_emb
189
+ if self.embedding_fraction == 1:
190
+ x = self.emb_drop(x)
191
+ else:
192
+ x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
193
+ assert isinstance(self.emb_drop, nn.Module)
194
+ x = self.emb_drop(x_shrunk)
195
+ (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
196
+ presents = () if use_cache else None
197
+ if use_cache and past_key_values is None:
198
+ past_key_values = [() for _ in range(self.config.n_layers)]
199
+ all_hidden_states = () if output_hidden_states else None
200
+ all_self_attns = () if output_attentions else None
201
+ for (b_idx, block) in enumerate(self.blocks):
202
+ if output_hidden_states:
203
+ assert all_hidden_states is not None
204
+ all_hidden_states = all_hidden_states + (x,)
205
+ past_key_value = past_key_values[b_idx] if past_key_values is not None else None
206
+ (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
207
+ if presents is not None:
208
+ presents += (present,)
209
+ if output_attentions:
210
+ assert all_self_attns is not None
211
+ all_self_attns = all_self_attns + (attn_weights,)
212
+ x = self.norm_f(x)
213
+ if output_hidden_states:
214
+ assert all_hidden_states is not None
215
+ all_hidden_states = all_hidden_states + (x,)
216
+ return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
217
+
218
+ def param_init_fn(self, module: nn.Module) -> None:
219
+ init_fn_name = self.config.init_config['name']
220
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
221
+
222
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
223
+ return isinstance(module, MPTBlock)
224
+
225
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
226
+ return isinstance(module, MPTBlock)
227
+
228
+ class MPTForCausalLM(MPTPreTrainedModel):
229
+
230
+ def __init__(self, config: MPTConfig):
231
+ super().__init__(config)
232
+ if not config.tie_word_embeddings:
233
+ raise ValueError('MPTForCausalLM only supports tied word embeddings')
234
+ log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
235
+ self.transformer: MPTModel = MPTModel(config)
236
+ for child in self.transformer.children():
237
+ if isinstance(child, torch.nn.ModuleList):
238
+ continue
239
+ if isinstance(child, torch.nn.Module):
240
+ child._fsdp_wrap = True
241
+ self.logit_scale = None
242
+ if config.logit_scale is not None:
243
+ logit_scale = config.logit_scale
244
+ if isinstance(logit_scale, str):
245
+ if logit_scale == 'inv_sqrt_d_model':
246
+ logit_scale = 1 / math.sqrt(config.d_model)
247
+ else:
248
+ raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
249
+ self.logit_scale = logit_scale
250
+
251
+ def get_input_embeddings(self) -> nn.Embedding:
252
+ return self.transformer.wte
253
+
254
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
255
+ self.transformer.wte = value
256
+
257
+ def get_output_embeddings(self) -> nn.Embedding:
258
+ return self.transformer.wte
259
+
260
+ def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding]) -> None:
261
+ self.transformer.wte = new_embeddings
262
+
263
+ def set_decoder(self, decoder: MPTModel) -> None:
264
+ self.transformer = decoder
265
+
266
+ def get_decoder(self) -> MPTModel:
267
+ return self.transformer
268
+
269
+ def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
270
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
271
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
272
+ if inputs_embeds is not None:
273
+ raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
274
+ outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
275
+ logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
276
+ if self.logit_scale is not None:
277
+ if self.logit_scale == 0:
278
+ warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
279
+ logits *= self.logit_scale
280
+ loss = None
281
+ if labels is not None:
282
+ _labels = torch.roll(labels, shifts=-1)
283
+ _labels[:, -1] = -100
284
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
285
+ return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
286
+
287
+ def param_init_fn(self, module: nn.Module) -> None:
288
+ init_fn_name = self.config.init_config['name']
289
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
290
+
291
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
292
+ return isinstance(module, MPTBlock)
293
+
294
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
295
+ return isinstance(module, MPTBlock)
296
+
297
+ def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
298
+ if inputs_embeds is not None:
299
+ raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
300
+ attention_mask = kwargs['attention_mask'].bool()
301
+ if attention_mask[:, -1].sum() != attention_mask.shape[0]:
302
+ raise NotImplementedError('MPT does not support generation with right padding.')
303
+ if self.transformer.attn_uses_sequence_id and self.training:
304
+ sequence_id = torch.zeros_like(input_ids[:1])
305
+ else:
306
+ sequence_id = None
307
+ if past_key_values is not None:
308
+ input_ids = input_ids[:, -1].unsqueeze(-1)
309
+ if self.transformer.prefix_lm:
310
+ prefix_mask = torch.ones_like(attention_mask)
311
+ if kwargs.get('use_cache') == False:
312
+ raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
313
+ else:
314
+ prefix_mask = None
315
+ return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
316
+
317
+ @staticmethod
318
+ def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
319
+ """Used by HuggingFace generate when using beam search with kv-caching.
320
+
321
+ See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
322
+ for an example in transformers.
323
+ """
324
+ reordered_past = []
325
+ for layer_past in past_key_values:
326
+ reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
327
+ return reordered_past