tillschwoerer
commited on
Commit
•
bf81a8d
1
Parent(s):
c13bf1c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilbert-base-uncased-finetuned-sst2
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: glue
|
17 |
+
type: glue
|
18 |
+
config: sst2
|
19 |
+
split: train
|
20 |
+
args: sst2
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9071100917431193
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# distilbert-base-uncased-finetuned-sst2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2842
|
35 |
+
- Accuracy: 0.9071
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
66 |
+
| No log | 0.02 | 100 | 0.3316 | 0.8624 |
|
67 |
+
| No log | 0.05 | 200 | 0.3357 | 0.8612 |
|
68 |
+
| No log | 0.07 | 300 | 0.3996 | 0.8383 |
|
69 |
+
| No log | 0.1 | 400 | 0.3012 | 0.8716 |
|
70 |
+
| 0.3421 | 0.12 | 500 | 0.3227 | 0.8693 |
|
71 |
+
| 0.3421 | 0.14 | 600 | 0.3643 | 0.8727 |
|
72 |
+
| 0.3421 | 0.17 | 700 | 0.2734 | 0.8853 |
|
73 |
+
| 0.3421 | 0.19 | 800 | 0.3077 | 0.8945 |
|
74 |
+
| 0.3421 | 0.21 | 900 | 0.2709 | 0.9002 |
|
75 |
+
| 0.2705 | 0.24 | 1000 | 0.2737 | 0.8899 |
|
76 |
+
| 0.2705 | 0.26 | 1100 | 0.3079 | 0.8979 |
|
77 |
+
| 0.2705 | 0.29 | 1200 | 0.2713 | 0.8968 |
|
78 |
+
| 0.2705 | 0.31 | 1300 | 0.2505 | 0.8933 |
|
79 |
+
| 0.2705 | 0.33 | 1400 | 0.2932 | 0.8922 |
|
80 |
+
| 0.239 | 0.36 | 1500 | 0.2842 | 0.9071 |
|
81 |
+
| 0.239 | 0.38 | 1600 | 0.2509 | 0.9014 |
|
82 |
+
| 0.239 | 0.4 | 1700 | 0.2819 | 0.8853 |
|
83 |
+
| 0.239 | 0.43 | 1800 | 0.2515 | 0.8956 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.25.1
|
89 |
+
- Pytorch 1.12.1+cu113
|
90 |
+
- Datasets 2.7.1
|
91 |
+
- Tokenizers 0.13.2
|