File size: 1,917 Bytes
0644589 efcf9bb 0644589 02aaf3c 0644589 efcf9bb 0644589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_keras_callback
model-index:
- name: t5-large-trivia-v2-ca2q
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# t5-large-trivia-v2-ca2q
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1879
- Validation Loss: 0.3243
- Epoch: 2
<pre>
{'eval_loss': 1.0877012014389038,
'eval_bleu': 21.018623207468856,
'eval_rouge1': 58.42,
'eval_rouge2': 35.27,
'eval_rougeL': 51.13,
'eval_rougeLsum': 51.15,
'eval_exact': 0.02536196676707803,
'eval_runtime': 346.7508,
'eval_samples_per_second': 29.678,
'eval_steps_per_second': 0.929}
</pre>
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.4719 | 0.3053 | 0 |
| 0.2556 | 0.3032 | 1 |
| 0.1879 | 0.3243 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|