File size: 5,400 Bytes
922d759 c43b522 922d759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: mit
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
- imagenet-22k
---
# Model card for eva02_small_patch14_336.mim_in22k_ft_in1k
An EVA02 image classification model. Pretrained on ImageNet-22k with masked image modeling (using EVA-CLIP as a MIM teacher) and fine-tuned on ImageNet-1k by paper authors.
EVA-02 models are vision transformers with mean pooling, SwiGLU, Rotary Position Embeddings (ROPE), and extra LN in MLP (for Base & Large).
NOTE: `timm` checkpoints are float32 for consistency with other models. Original checkpoints are float16 or bfloat16 in some cases, see originals if that's preferred.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 22.1
- GMACs: 15.5
- Activations (M): 54.3
- Image size: 336 x 336
- **Papers:**
- EVA-02: A Visual Representation for Neon Genesis: https://arxiv.org/abs/2303.11331
- EVA-CLIP: Improved Training Techniques for CLIP at Scale: https://arxiv.org/abs/2303.15389
- **Original:**
- https://github.com/baaivision/EVA
- https://huggingface.co/Yuxin-CV/EVA-02
- **Pretrain Dataset:** ImageNet-22k
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('eva02_small_patch14_336.mim_in22k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'eva02_small_patch14_336.mim_in22k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 577, 384) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|model |top1 |top5 |param_count|img_size|
|-----------------------------------------------|------|------|-----------|--------|
|eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |90.054|99.042|305.08 |448 |
|eva02_large_patch14_448.mim_in22k_ft_in22k_in1k|89.946|99.01 |305.08 |448 |
|eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 |
|eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 |
|eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 |
|eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 |
|eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 |
|eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 |
|eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 |
|eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 |
|eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 |
|eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 |
|eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 |
|eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 |
|eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 |
|eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 |
## Citation
```bibtex
@article{EVA02,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Fang, Yuxin and Sun, Quan and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.11331},
year={2023}
}
```
```bibtex
@article{EVA-CLIP,
title={EVA-02: A Visual Representation for Neon Genesis},
author={Sun, Quan and Fang, Yuxin and Wu, Ledell and Wang, Xinlong and Cao, Yue},
journal={arXiv preprint arXiv:2303.15389},
year={2023}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```
|