Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
---
|
5 |
+
|
6 |
+
### TinyLLaVA
|
7 |
+
|
8 |
+
We trained a TinyLLaVA model with 3.1B parameters, employing the same training settings as [TinyLLaVA](https://github.com/DLCV-BUAA/TinyLLaVABench). For the Language and Vision models, we chose [Phi-2](microsoft/phi-2) and [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384), respectively. The Connector was configured with a 2-layer MLP. The dataset used for training is the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md) dataset.
|
9 |
+
|
10 |
+
### Usage
|
11 |
+
|
12 |
+
1. you need to download the generate file "generate_model.py".
|
13 |
+
2. running the following command:
|
14 |
+
```bash
|
15 |
+
python generate_model --model tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B --prompt 'you want to ask' --image '/path/to/related/image'
|
16 |
+
```
|
17 |
+
or execute the following test code:
|
18 |
+
```python
|
19 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
20 |
+
from generate_model import *
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B", trust_remote_code=True)
|
22 |
+
config = model.config
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B", use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
|
24 |
+
prompt="you want to ask"
|
25 |
+
image="/path/to/related/image"
|
26 |
+
output_text, genertaion_time = generate(prompt=prompt, image=image, model=model, tokenizer=tokenizer)
|
27 |
+
print_txt = (
|
28 |
+
f'\r\n{"=" * os.get_terminal_size().columns}\r\n'
|
29 |
+
'\033[1m Prompt + Generated Output\033[0m\r\n'
|
30 |
+
f'{"-" * os.get_terminal_size().columns}\r\n'
|
31 |
+
f'{output_text}\r\n'
|
32 |
+
f'{"-" * os.get_terminal_size().columns}\r\n'
|
33 |
+
'\r\nGeneration took'
|
34 |
+
f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m'
|
35 |
+
'seconds.\r\n'
|
36 |
+
)
|
37 |
+
print(print_txt)
|
38 |
+
```
|
39 |
+
### Result
|
40 |
+
|
41 |
+
| model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU |
|
42 |
+
| :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ |
|
43 |
+
| [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.98 | - |
|
44 |
+
| [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
|