Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,9 @@ print('runing time:', genertaion_time)
|
|
27 |
|
28 |
| model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU |
|
29 |
| :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | ------ |
|
|
|
30 |
| [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
|
|
|
31 |
| [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
|
32 |
|
33 |
P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less codding mistake.
|
|
|
27 |
|
28 |
| model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU |
|
29 |
| :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | ------ |
|
30 |
+
| [LLaVA-1.5-7B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 78.5 | 62.0 | 66.8 | 58.2 | 30.5 | 85.9 | 1510.7 | - |
|
31 |
| [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
|
32 |
+
| [tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B](https://huggingface.co/tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B) | 78.4 | 61.6 | 64.4 | 53.6 | 26.9 | 86.4 | 1339.0 | 31.7 |
|
33 |
| [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
|
34 |
|
35 |
P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less codding mistake.
|