tinyllava commited on
Commit
43c21dc
1 Parent(s): 03e795d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -0
README.md CHANGED
@@ -27,7 +27,9 @@ print('runing time:', genertaion_time)
27
 
28
  | model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU |
29
  | :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | ------ |
 
30
  | [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
 
31
  | [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
32
 
33
  P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less codding mistake.
 
27
 
28
  | model_name | vqav2 | gqa | sqa | textvqa | MM-VET | POPE | MME | MMMU |
29
  | :----------------------------------------------------------: | ----- | ------- | ----- | ----- | ------- | ----- | ------ | ------ |
30
+ | [LLaVA-1.5-7B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 78.5 | 62.0 | 66.8 | 58.2 | 30.5 | 85.9 | 1510.7 | - |
31
  | [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
32
+ | [tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B](https://huggingface.co/tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B) | 78.4 | 61.6 | 64.4 | 53.6 | 26.9 | 86.4 | 1339.0 | 31.7 |
33
  | [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
34
 
35
  P.S. TinyLLaVA Factory is an open-source modular codebase for small-scale LMMs with a focus on simplicity of code implementations, extensibility of new features, and reproducibility of training results. This code repository provides standard training&evaluating pipelines, flexible data preprocessing&model configurations, and easily extensible architectures. Users can customize their own LMMs with minimal coding effort and less codding mistake.