tinyllava commited on
Commit
cd7a15c
1 Parent(s): 7c2de37

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -22
README.md CHANGED
@@ -8,35 +8,21 @@ pipeline_tag: image-text-to-text
8
  We trained a TinyLLaVA model with 3.1B parameters, employing the same training settings as [TinyLLaVA](https://github.com/DLCV-BUAA/TinyLLaVABench). For the Language and Vision models, we chose [Phi-2](microsoft/phi-2) and [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384), respectively. The Connector was configured with a 2-layer MLP. The dataset used for training is the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md) dataset.
9
 
10
  ### Usage
11
-
12
- 1. you need to download the generate file "generate_model.py".
13
- 2. running the following command:
14
- ```bash
15
- python generate_model --model tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B --prompt 'you want to ask' --image '/path/to/related/image'
16
- ```
17
- or execute the following test code:
18
  ```python
19
  from transformers import AutoTokenizer, AutoModelForCausalLM
20
- from generate_model import *
21
 
22
  hf_path = 'tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B'
23
  model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
 
24
  config = model.config
25
  tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
26
- prompt="you want to ask"
27
- image="/path/to/related/image"
28
- output_text, genertaion_time = generate(prompt=prompt, image=image, model=model, tokenizer=tokenizer)
29
- print_txt = (
30
- f'\r\n{"=" * os.get_terminal_size().columns}\r\n'
31
- '\033[1m Prompt + Generated Output\033[0m\r\n'
32
- f'{"-" * os.get_terminal_size().columns}\r\n'
33
- f'{output_text}\r\n'
34
- f'{"-" * os.get_terminal_size().columns}\r\n'
35
- '\r\nGeneration took'
36
- f'\033[1m\033[92m {round(genertaion_time, 2)} \033[0m'
37
- 'seconds.\r\n'
38
- )
39
- print(print_txt)
40
  ```
41
  ### Result
42
 
 
8
  We trained a TinyLLaVA model with 3.1B parameters, employing the same training settings as [TinyLLaVA](https://github.com/DLCV-BUAA/TinyLLaVABench). For the Language and Vision models, we chose [Phi-2](microsoft/phi-2) and [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384), respectively. The Connector was configured with a 2-layer MLP. The dataset used for training is the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md) dataset.
9
 
10
  ### Usage
11
+ Execute the following test code:
 
 
 
 
 
 
12
  ```python
13
  from transformers import AutoTokenizer, AutoModelForCausalLM
 
14
 
15
  hf_path = 'tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B'
16
  model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
17
+ model.cuda()
18
  config = model.config
19
  tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
20
+ prompt="What are these?"
21
+ image_url="http://images.cocodataset.org/val2017/000000039769.jpg"
22
+ output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, model=model, tokenizer=tokenizer)
23
+
24
+ print('model output: ', output_text)
25
+ print('runing time: ', genertaion_time)
 
 
 
 
 
 
 
 
26
  ```
27
  ### Result
28