File size: 11,863 Bytes
ff3870b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: '  I''ll pay $1,000 if anyone can find a published study that ChatGPT confirms
    merely attempts to refute the OPV AIDS theory without desperately resorting to
    a pathetic strawman.


    '
- text: my disappointment is immeasurable and my day is ruined. any idea if they will
    ever fix it or is it just permanent? i feel like just wow man just freaking wow
- text: The stuff chatgpt gives is entirely too scripted *and* impractical, which
    is what I'm trying to avoid :/
- text: 'my experience with product product and brand: it''s amazing and not a bit
    scary. despite the articles about product''s personality, my experience shows
    the opposite: it''s useful, friendly, and truly amazing technology.'
- text: product is a massive energy hog. have a bunch of tabs open and your computer
    will come to a crawl. also, ad blocking is terrible on product company ads) because
    product apparently has a "whitelist" of ads that it refuses to be blocked. company
    is way better
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.5192307692307693
      name: Accuracy
    - type: f1
      value:
      - 0.2641509433962264
      - 0.1553398058252427
      - 0.6593406593406593
      name: F1
    - type: precision
      value:
      - 0.1590909090909091
      - 0.09090909090909091
      - 0.9375
      name: Precision
    - type: recall
      value:
      - 0.7777777777777778
      - 0.5333333333333333
      - 0.5084745762711864
      name: Recall
---

# SetFit with BAAI/bge-small-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| peak    | <ul><li>" I used Word on Microsoft 10 on my laptop to type up my manuscript, and when I uploaded it onto KDP, it was automatically formatted perfectly for Kindle E-book. I didn't need to make any adjustments (thankfully)."</li><li>'feeling myself getting obsessed with/addicted to ChatGPT and the entire generative AI universe and its evolution. \n\ndelightful to have another really big, seemingly biggest yet tech to go deep on and obsess over and think about implications of for the foreseeable future'</li><li>'1/2 obsidian translate amazing plugin currently in beta. it can translate text in to multiple languages using multiple services. i just hooked it up to a free product translation account, and i am stunned by its accuracy. tft'</li></ul>                                                                                                                                                        |
| pit     | <ul><li>"Looks like I got a new Microsoft 365 update last night. Now when I go to Options or Print, I crash. It's happening on multiple files. Probably other issues too, but haven't experimented much beyond that. Windows 11 and, obviously, the most up-to-date PPT. Fortunately I don't need PowerPoint right now - except to answer questions here - so I guess I'll just stick it out to see what happens before I do a repair/reinstall. Update: Quick repair didn't work. Full repair that I believe is a full reinstall didn't work."</li><li>'my disappointment is immeasurable and my day is ruined. any idea if they will ever fix it or is it just permanent? i feel like just wow man just freaking wow'</li><li>'between 100 pages of the packet devoted to some crumbly looking old house and the powerpoint about the importance of the military industrial complex, this meeting has me feeling hostile.'</li></ul> |
| neither | <ul><li>" Elevate your game with these mind-blowing ChatGPT prompts!  \n\nWhether you're diving into knowledge, refining your skills, or making decisions, let  be your guide to excellence. \n\nReady to unlock the power of AI?  \n\n "</li><li>"As an alternative you can always use Ask Sage ( Basically the gov version of ChatGPT and allowed to be used for CUI. It's what I use on NMCI and I've never had any problems!"</li><li>"  I'll pay $1,000 if anyone can find a published study that ChatGPT confirms merely attempts to refute the OPV AIDS theory without desperately resorting to a pathetic strawman.\n\n"</li></ul>                                                                                                                                                                                                                                                                                             |

## Evaluation

### Metrics
| Label   | Accuracy | F1                                                           | Precision                                         | Recall                                                       |
|:--------|:---------|:-------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------------------------|
| **all** | 0.5192   | [0.2641509433962264, 0.1553398058252427, 0.6593406593406593] | [0.1590909090909091, 0.09090909090909091, 0.9375] | [0.7777777777777778, 0.5333333333333333, 0.5084745762711864] |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("tjmooney98/725_test_model")
# Run inference
preds = model("The stuff chatgpt gives is entirely too scripted *and* impractical, which is what I'm trying to avoid :/")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 18  | 38.0667 | 91  |

| Label   | Training Sample Count |
|:--------|:----------------------|
| pit     | 5                     |
| peak    | 5                     |
| neither | 5                     |

### Training Hyperparameters
- batch_size: (5, 5)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0333 | 1    | 0.1809        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->