tmilushev commited on
Commit
6e82ae7
1 Parent(s): df09e75

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.52 +/- 0.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35b163558a2e5b877f7bf7b04466cfcbf8429c4b9111b018c7b5743c0f5e48c8
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe730b77700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fe730b76210>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1673987854271815686,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUPWeP7FswD4EwoI+mXzYPh1Ocz5sNoi/Pg82vrOgfL84lzY+uAO7v15DvT/E6bE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]]",
60
+ "desired_goal": "[[ 1.2418613 0.37582925 0.25538647]\n [ 0.4228256 0.23760267 -1.0641608 ]\n [-0.17779252 -0.9868271 0.17831123]\n [-1.461051 1.4786184 0.34748662]]",
61
+ "observation": "[[ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlF1wPd+5RbwY/jI+hDPpvZo1Fb5RGHQ+NFYMPoaxob2wIb088gUju3QANT0yykk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.05868299 -0.01206824 0.17479742]\n [-0.11386779 -0.14571229 0.23837401]\n [ 0.13704759 -0.07895188 0.02308735]\n [-0.00248754 0.04418989 0.19706038]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh8H8FTJX2r+UhpRSlIwBbJRLMowBdJRHQKYfLi4J/od1fZQoaAZoCWgPQwhORpVh3I3ov5SGlFKUaBVLMmgWR0CmHuiCSRr8dX2UKGgGaAloD0MI4syv5gBB47+UhpRSlGgVSzJoFkdAph6mxIJ7cHV9lChoBmgJaA9DCKGgFK3cC9G/lIaUUpRoFUsyaBZHQKYeYZbY9Pl1fZQoaAZoCWgPQwjWcfxQaUTiv5SGlFKUaBVLMmgWR0CmIGh9b5dodX2UKGgGaAloD0MIFqdaC7NQ4L+UhpRSlGgVSzJoFkdApiAiji4rjHV9lChoBmgJaA9DCFryeFp+4Na/lIaUUpRoFUsyaBZHQKYf4KXv6TJ1fZQoaAZoCWgPQwgbLQd6qG3Yv5SGlFKUaBVLMmgWR0CmH5tDD0lJdX2UKGgGaAloD0MImYBfI0mQ57+UhpRSlGgVSzJoFkdApiGYtthuwXV9lChoBmgJaA9DCHCVJxB2ity/lIaUUpRoFUsyaBZHQKYhUtxMnJF1fZQoaAZoCWgPQwivk/qytFPhv5SGlFKUaBVLMmgWR0CmIREHUtqYdX2UKGgGaAloD0MIfNKJBFPN5b+UhpRSlGgVSzJoFkdApiDLz3AVPHV9lChoBmgJaA9DCL7Z5sb0BOC/lIaUUpRoFUsyaBZHQKYizszEaVF1fZQoaAZoCWgPQwimtWlsrwXmv5SGlFKUaBVLMmgWR0CmIoj+irT6dX2UKGgGaAloD0MIX5oiwOld27+UhpRSlGgVSzJoFkdApiJHW+XZ5HV9lChoBmgJaA9DCNl78UV7vNG/lIaUUpRoFUsyaBZHQKYiAjmjj711fZQoaAZoCWgPQwj4i9mSVRHmv5SGlFKUaBVLMmgWR0CmJAxcu8K5dX2UKGgGaAloD0MI8Bge+1ks3r+UhpRSlGgVSzJoFkdApiPGgg5imXV9lChoBmgJaA9DCHPyIhPwa+O/lIaUUpRoFUsyaBZHQKYjhKISDh91fZQoaAZoCWgPQwhDklm9w+3Sv5SGlFKUaBVLMmgWR0CmIz+F10T2dX2UKGgGaAloD0MIQ48YPbdQ4b+UhpRSlGgVSzJoFkdApiU+4NI9T3V9lChoBmgJaA9DCBbdek0PCuO/lIaUUpRoFUsyaBZHQKYk+P+XJHR1fZQoaAZoCWgPQwgvpwTEJFzjv5SGlFKUaBVLMmgWR0CmJLchs67vdX2UKGgGaAloD0MIRdYaSu1F3L+UhpRSlGgVSzJoFkdApiRx8twrD3V9lChoBmgJaA9DCFkyx/Ku+uG/lIaUUpRoFUsyaBZHQKYmbuejEeh1fZQoaAZoCWgPQwivlGWIY13Tv5SGlFKUaBVLMmgWR0CmJij6vaDgdX2UKGgGaAloD0MI2uOFdHgI6L+UhpRSlGgVSzJoFkdApiXnGp++d3V9lChoBmgJaA9DCHibN04K89O/lIaUUpRoFUsyaBZHQKYloelKsdV1fZQoaAZoCWgPQwi8Wu7MBMPhv5SGlFKUaBVLMmgWR0CmJ6ugpSaWdX2UKGgGaAloD0MILLgf8MAA0L+UhpRSlGgVSzJoFkdApidlvCMxXXV9lChoBmgJaA9DCHZUNUHUfdu/lIaUUpRoFUsyaBZHQKYnI75Ec811fZQoaAZoCWgPQwgDX9Gt13Tjv5SGlFKUaBVLMmgWR0CmJt6c7QsxdX2UKGgGaAloD0MIG2fTEcBN6L+UhpRSlGgVSzJoFkdApikIdhiLEXV9lChoBmgJaA9DCBRZayi1F9u/lIaUUpRoFUsyaBZHQKYowtcOby91fZQoaAZoCWgPQwiRYRVvZB7Tv5SGlFKUaBVLMmgWR0CmKIF2vB8AdX2UKGgGaAloD0MIIXh8e9cg4b+UhpRSlGgVSzJoFkdApig9MAWBSXV9lChoBmgJaA9DCLjmjv6Xa9S/lIaUUpRoFUsyaBZHQKYqPzOoo/l1fZQoaAZoCWgPQwhXfEPhs3Xgv5SGlFKUaBVLMmgWR0CmKflHJ9y+dX2UKGgGaAloD0MIamrZWl8k1b+UhpRSlGgVSzJoFkdApim3aSLZSXV9lChoBmgJaA9DCO6Yuiu7YNq/lIaUUpRoFUsyaBZHQKYpci6g/Tt1fZQoaAZoCWgPQwju0RvuI7fbv5SGlFKUaBVLMmgWR0CmK3BciW3SdX2UKGgGaAloD0MItd5vtOMG47+UhpRSlGgVSzJoFkdApisqptJnQXV9lChoBmgJaA9DCEWg+geRDNW/lIaUUpRoFUsyaBZHQKYq6QTVUdd1fZQoaAZoCWgPQwg/OQoQBTPUv5SGlFKUaBVLMmgWR0CmKqPBacI7dX2UKGgGaAloD0MIUMQihh3G6r+UhpRSlGgVSzJoFkdApiyu9WZJCnV9lChoBmgJaA9DCA9iZwqd19+/lIaUUpRoFUsyaBZHQKYsaTKT0QN1fZQoaAZoCWgPQwi1/pYA/FPWv5SGlFKUaBVLMmgWR0CmLCdcbBGhdX2UKGgGaAloD0MI746M1eb/4L+UhpRSlGgVSzJoFkdApiviOq//N3V9lChoBmgJaA9DCO87hsd+FtW/lIaUUpRoFUsyaBZHQKYt6ZPVNHp1fZQoaAZoCWgPQwiHFAMkmkDgv5SGlFKUaBVLMmgWR0CmLaO7pV0cdX2UKGgGaAloD0MIpFTCE3r97L+UhpRSlGgVSzJoFkdApi1h4jbBXXV9lChoBmgJaA9DCLTonQq459i/lIaUUpRoFUsyaBZHQKYtHKDkELZ1fZQoaAZoCWgPQwif5uRFJmDhv5SGlFKUaBVLMmgWR0CmLxtmL9/CdX2UKGgGaAloD0MISYYcW88Q17+UhpRSlGgVSzJoFkdApi7VnXd0rHV9lChoBmgJaA9DCF2pZ0Eo79a/lIaUUpRoFUsyaBZHQKYuk9qUNa11fZQoaAZoCWgPQwgZG7rZHyjtv5SGlFKUaBVLMmgWR0CmLk6h6By0dX2UKGgGaAloD0MILxaGyOlr6L+UhpRSlGgVSzJoFkdApjBMP8Q7LnV9lChoBmgJaA9DCO6zykxp/eC/lIaUUpRoFUsyaBZHQKYwBmNipeh1fZQoaAZoCWgPQwi9pgcFpWjev5SGlFKUaBVLMmgWR0CmL8THjp9rdX2UKGgGaAloD0MI8l1KXTKO5r+UhpRSlGgVSzJoFkdApi9/lEJBxHV9lChoBmgJaA9DCNrFNNO9zum/lIaUUpRoFUsyaBZHQKYxgbvPTod1fZQoaAZoCWgPQwgpIy4AjVLov5SGlFKUaBVLMmgWR0CmMTw1JlJ6dX2UKGgGaAloD0MIB/AWSFD84b+UhpRSlGgVSzJoFkdApjD6iZfD13V9lChoBmgJaA9DCAPuef60UeC/lIaUUpRoFUsyaBZHQKYwtW8yvcJ1fZQoaAZoCWgPQwgb1H5rJ0rKv5SGlFKUaBVLMmgWR0CmMsBkiD/VdX2UKGgGaAloD0MIXw1QGmqU47+UhpRSlGgVSzJoFkdApjJ6gh8pkXV9lChoBmgJaA9DCGjr4GBvYt+/lIaUUpRoFUsyaBZHQKYyOMQVbiZ1fZQoaAZoCWgPQwge+u5Wlmjlv5SGlFKUaBVLMmgWR0CmMfObI91VdX2UKGgGaAloD0MIaHizBu+r07+UhpRSlGgVSzJoFkdApjQfQUpNK3V9lChoBmgJaA9DCCbFxydk5+m/lIaUUpRoFUsyaBZHQKYz2lUp/gB1fZQoaAZoCWgPQwhgOUIG8mzjv5SGlFKUaBVLMmgWR0CmM5icwxnGdX2UKGgGaAloD0MIFmniHeDJ4r+UhpRSlGgVSzJoFkdApjNTcZccEXV9lChoBmgJaA9DCPcEie3ugeO/lIaUUpRoFUsyaBZHQKY1W/QBxPx1fZQoaAZoCWgPQwgn9tA+VvDRv5SGlFKUaBVLMmgWR0CmNRY0dilSdX2UKGgGaAloD0MI3lSkwthC37+UhpRSlGgVSzJoFkdApjTUeXAuZnV9lChoBmgJaA9DCBx6i4f3HOS/lIaUUpRoFUsyaBZHQKY0jw/gR9R1fZQoaAZoCWgPQwiQZ5dvfVjYv5SGlFKUaBVLMmgWR0CmNqCkfs/qdX2UKGgGaAloD0MIR8Zq8/+q5L+UhpRSlGgVSzJoFkdApjZbD8+A3HV9lChoBmgJaA9DCEnyXN+Hg+a/lIaUUpRoFUsyaBZHQKY2GgRsdkt1fZQoaAZoCWgPQwjRPesaLQfSv5SGlFKUaBVLMmgWR0CmNdT8P4EfdX2UKGgGaAloD0MIAtNp3QY17L+UhpRSlGgVSzJoFkdApjfouAZsK3V9lChoBmgJaA9DCDOkiuJVVuK/lIaUUpRoFUsyaBZHQKY3pBEa2nd1fZQoaAZoCWgPQwg164zvi0vUv5SGlFKUaBVLMmgWR0CmN2OOjqOcdX2UKGgGaAloD0MIgufewyXH3L+UhpRSlGgVSzJoFkdApjcfjbSJCXV9lChoBmgJaA9DCDOl9bcEYOS/lIaUUpRoFUsyaBZHQKY5HbblA/t1fZQoaAZoCWgPQwi8sDVbecnQv5SGlFKUaBVLMmgWR0CmONf8l5WzdX2UKGgGaAloD0MIeF4qNuZ12r+UhpRSlGgVSzJoFkdApjiWRs/IKnV9lChoBmgJaA9DCOqymNh8XNC/lIaUUpRoFUsyaBZHQKY4UPaL4vh1fZQoaAZoCWgPQwiwOQfPhCbcv5SGlFKUaBVLMmgWR0CmOluvUz9CdX2UKGgGaAloD0MIXDgQkgXM5b+UhpRSlGgVSzJoFkdApjoVyPuG9HV9lChoBmgJaA9DCAZKCiyAKeK/lIaUUpRoFUsyaBZHQKY50/CZWq91fZQoaAZoCWgPQwhQUIpW7gXcv5SGlFKUaBVLMmgWR0CmOY6lLvkSdX2UKGgGaAloD0MI6GuWy0bn4b+UhpRSlGgVSzJoFkdApjvFc4YJmnV9lChoBmgJaA9DCJZ2ai43mOS/lIaUUpRoFUsyaBZHQKY7f6X0Gu91fZQoaAZoCWgPQwheLXdmguHmv5SGlFKUaBVLMmgWR0CmOz66jFhodX2UKGgGaAloD0MIBOj3/ZsX4L+UhpRSlGgVSzJoFkdApjr5kCmuT3V9lChoBmgJaA9DCH+mXrcIjN2/lIaUUpRoFUsyaBZHQKY8/cry1/l1fZQoaAZoCWgPQwgDz72HS47fv5SGlFKUaBVLMmgWR0CmPLfgiu+zdX2UKGgGaAloD0MIe8A8ZMqH5r+UhpRSlGgVSzJoFkdApjx190A93nV9lChoBmgJaA9DCKvnpPeNL+C/lIaUUpRoFUsyaBZHQKY8MLDQ7cR1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e812d38452d262ac119aa0beb047c379aa23dc7a1a2fb9b2d132f660133be9c9
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa6641875f843e24cd07da27ac5e769b5cd38a723c4fc899a20c867bc2493a4b
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe730b77700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe730b76210>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673987854271815686, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAY+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+Y+rmPpefLDy8IvQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUPWeP7FswD4EwoI+mXzYPh1Ocz5sNoi/Pg82vrOgfL84lzY+uAO7v15DvT/E6bE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7xj6uY+l58sPLwi9D4NSOE7FzRwOydOj7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]\n [0.45100698 0.0105361 0.4768275 ]]", "desired_goal": "[[ 1.2418613 0.37582925 0.25538647]\n [ 0.4228256 0.23760267 -1.0641608 ]\n [-0.17779252 -0.9868271 0.17831123]\n [-1.461051 1.4786184 0.34748662]]", "observation": "[[ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]\n [ 0.45100698 0.0105361 0.4768275 0.00687504 0.00366521 -0.01749332]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlF1wPd+5RbwY/jI+hDPpvZo1Fb5RGHQ+NFYMPoaxob2wIb088gUju3QANT0yykk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05868299 -0.01206824 0.17479742]\n [-0.11386779 -0.14571229 0.23837401]\n [ 0.13704759 -0.07895188 0.02308735]\n [-0.00248754 0.04418989 0.19706038]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIh8H8FTJX2r+UhpRSlIwBbJRLMowBdJRHQKYfLi4J/od1fZQoaAZoCWgPQwhORpVh3I3ov5SGlFKUaBVLMmgWR0CmHuiCSRr8dX2UKGgGaAloD0MI4syv5gBB47+UhpRSlGgVSzJoFkdAph6mxIJ7cHV9lChoBmgJaA9DCKGgFK3cC9G/lIaUUpRoFUsyaBZHQKYeYZbY9Pl1fZQoaAZoCWgPQwjWcfxQaUTiv5SGlFKUaBVLMmgWR0CmIGh9b5dodX2UKGgGaAloD0MIFqdaC7NQ4L+UhpRSlGgVSzJoFkdApiAiji4rjHV9lChoBmgJaA9DCFryeFp+4Na/lIaUUpRoFUsyaBZHQKYf4KXv6TJ1fZQoaAZoCWgPQwgbLQd6qG3Yv5SGlFKUaBVLMmgWR0CmH5tDD0lJdX2UKGgGaAloD0MImYBfI0mQ57+UhpRSlGgVSzJoFkdApiGYtthuwXV9lChoBmgJaA9DCHCVJxB2ity/lIaUUpRoFUsyaBZHQKYhUtxMnJF1fZQoaAZoCWgPQwivk/qytFPhv5SGlFKUaBVLMmgWR0CmIREHUtqYdX2UKGgGaAloD0MIfNKJBFPN5b+UhpRSlGgVSzJoFkdApiDLz3AVPHV9lChoBmgJaA9DCL7Z5sb0BOC/lIaUUpRoFUsyaBZHQKYizszEaVF1fZQoaAZoCWgPQwimtWlsrwXmv5SGlFKUaBVLMmgWR0CmIoj+irT6dX2UKGgGaAloD0MIX5oiwOld27+UhpRSlGgVSzJoFkdApiJHW+XZ5HV9lChoBmgJaA9DCNl78UV7vNG/lIaUUpRoFUsyaBZHQKYiAjmjj711fZQoaAZoCWgPQwj4i9mSVRHmv5SGlFKUaBVLMmgWR0CmJAxcu8K5dX2UKGgGaAloD0MI8Bge+1ks3r+UhpRSlGgVSzJoFkdApiPGgg5imXV9lChoBmgJaA9DCHPyIhPwa+O/lIaUUpRoFUsyaBZHQKYjhKISDh91fZQoaAZoCWgPQwhDklm9w+3Sv5SGlFKUaBVLMmgWR0CmIz+F10T2dX2UKGgGaAloD0MIQ48YPbdQ4b+UhpRSlGgVSzJoFkdApiU+4NI9T3V9lChoBmgJaA9DCBbdek0PCuO/lIaUUpRoFUsyaBZHQKYk+P+XJHR1fZQoaAZoCWgPQwgvpwTEJFzjv5SGlFKUaBVLMmgWR0CmJLchs67vdX2UKGgGaAloD0MIRdYaSu1F3L+UhpRSlGgVSzJoFkdApiRx8twrD3V9lChoBmgJaA9DCFkyx/Ku+uG/lIaUUpRoFUsyaBZHQKYmbuejEeh1fZQoaAZoCWgPQwivlGWIY13Tv5SGlFKUaBVLMmgWR0CmJij6vaDgdX2UKGgGaAloD0MI2uOFdHgI6L+UhpRSlGgVSzJoFkdApiXnGp++d3V9lChoBmgJaA9DCHibN04K89O/lIaUUpRoFUsyaBZHQKYloelKsdV1fZQoaAZoCWgPQwi8Wu7MBMPhv5SGlFKUaBVLMmgWR0CmJ6ugpSaWdX2UKGgGaAloD0MILLgf8MAA0L+UhpRSlGgVSzJoFkdApidlvCMxXXV9lChoBmgJaA9DCHZUNUHUfdu/lIaUUpRoFUsyaBZHQKYnI75Ec811fZQoaAZoCWgPQwgDX9Gt13Tjv5SGlFKUaBVLMmgWR0CmJt6c7QsxdX2UKGgGaAloD0MIG2fTEcBN6L+UhpRSlGgVSzJoFkdApikIdhiLEXV9lChoBmgJaA9DCBRZayi1F9u/lIaUUpRoFUsyaBZHQKYowtcOby91fZQoaAZoCWgPQwiRYRVvZB7Tv5SGlFKUaBVLMmgWR0CmKIF2vB8AdX2UKGgGaAloD0MIIXh8e9cg4b+UhpRSlGgVSzJoFkdApig9MAWBSXV9lChoBmgJaA9DCLjmjv6Xa9S/lIaUUpRoFUsyaBZHQKYqPzOoo/l1fZQoaAZoCWgPQwhXfEPhs3Xgv5SGlFKUaBVLMmgWR0CmKflHJ9y+dX2UKGgGaAloD0MIamrZWl8k1b+UhpRSlGgVSzJoFkdApim3aSLZSXV9lChoBmgJaA9DCO6Yuiu7YNq/lIaUUpRoFUsyaBZHQKYpci6g/Tt1fZQoaAZoCWgPQwju0RvuI7fbv5SGlFKUaBVLMmgWR0CmK3BciW3SdX2UKGgGaAloD0MItd5vtOMG47+UhpRSlGgVSzJoFkdApisqptJnQXV9lChoBmgJaA9DCEWg+geRDNW/lIaUUpRoFUsyaBZHQKYq6QTVUdd1fZQoaAZoCWgPQwg/OQoQBTPUv5SGlFKUaBVLMmgWR0CmKqPBacI7dX2UKGgGaAloD0MIUMQihh3G6r+UhpRSlGgVSzJoFkdApiyu9WZJCnV9lChoBmgJaA9DCA9iZwqd19+/lIaUUpRoFUsyaBZHQKYsaTKT0QN1fZQoaAZoCWgPQwi1/pYA/FPWv5SGlFKUaBVLMmgWR0CmLCdcbBGhdX2UKGgGaAloD0MI746M1eb/4L+UhpRSlGgVSzJoFkdApiviOq//N3V9lChoBmgJaA9DCO87hsd+FtW/lIaUUpRoFUsyaBZHQKYt6ZPVNHp1fZQoaAZoCWgPQwiHFAMkmkDgv5SGlFKUaBVLMmgWR0CmLaO7pV0cdX2UKGgGaAloD0MIpFTCE3r97L+UhpRSlGgVSzJoFkdApi1h4jbBXXV9lChoBmgJaA9DCLTonQq459i/lIaUUpRoFUsyaBZHQKYtHKDkELZ1fZQoaAZoCWgPQwif5uRFJmDhv5SGlFKUaBVLMmgWR0CmLxtmL9/CdX2UKGgGaAloD0MISYYcW88Q17+UhpRSlGgVSzJoFkdApi7VnXd0rHV9lChoBmgJaA9DCF2pZ0Eo79a/lIaUUpRoFUsyaBZHQKYuk9qUNa11fZQoaAZoCWgPQwgZG7rZHyjtv5SGlFKUaBVLMmgWR0CmLk6h6By0dX2UKGgGaAloD0MILxaGyOlr6L+UhpRSlGgVSzJoFkdApjBMP8Q7LnV9lChoBmgJaA9DCO6zykxp/eC/lIaUUpRoFUsyaBZHQKYwBmNipeh1fZQoaAZoCWgPQwi9pgcFpWjev5SGlFKUaBVLMmgWR0CmL8THjp9rdX2UKGgGaAloD0MI8l1KXTKO5r+UhpRSlGgVSzJoFkdApi9/lEJBxHV9lChoBmgJaA9DCNrFNNO9zum/lIaUUpRoFUsyaBZHQKYxgbvPTod1fZQoaAZoCWgPQwgpIy4AjVLov5SGlFKUaBVLMmgWR0CmMTw1JlJ6dX2UKGgGaAloD0MIB/AWSFD84b+UhpRSlGgVSzJoFkdApjD6iZfD13V9lChoBmgJaA9DCAPuef60UeC/lIaUUpRoFUsyaBZHQKYwtW8yvcJ1fZQoaAZoCWgPQwgb1H5rJ0rKv5SGlFKUaBVLMmgWR0CmMsBkiD/VdX2UKGgGaAloD0MIXw1QGmqU47+UhpRSlGgVSzJoFkdApjJ6gh8pkXV9lChoBmgJaA9DCGjr4GBvYt+/lIaUUpRoFUsyaBZHQKYyOMQVbiZ1fZQoaAZoCWgPQwge+u5Wlmjlv5SGlFKUaBVLMmgWR0CmMfObI91VdX2UKGgGaAloD0MIaHizBu+r07+UhpRSlGgVSzJoFkdApjQfQUpNK3V9lChoBmgJaA9DCCbFxydk5+m/lIaUUpRoFUsyaBZHQKYz2lUp/gB1fZQoaAZoCWgPQwhgOUIG8mzjv5SGlFKUaBVLMmgWR0CmM5icwxnGdX2UKGgGaAloD0MIFmniHeDJ4r+UhpRSlGgVSzJoFkdApjNTcZccEXV9lChoBmgJaA9DCPcEie3ugeO/lIaUUpRoFUsyaBZHQKY1W/QBxPx1fZQoaAZoCWgPQwgn9tA+VvDRv5SGlFKUaBVLMmgWR0CmNRY0dilSdX2UKGgGaAloD0MI3lSkwthC37+UhpRSlGgVSzJoFkdApjTUeXAuZnV9lChoBmgJaA9DCBx6i4f3HOS/lIaUUpRoFUsyaBZHQKY0jw/gR9R1fZQoaAZoCWgPQwiQZ5dvfVjYv5SGlFKUaBVLMmgWR0CmNqCkfs/qdX2UKGgGaAloD0MIR8Zq8/+q5L+UhpRSlGgVSzJoFkdApjZbD8+A3HV9lChoBmgJaA9DCEnyXN+Hg+a/lIaUUpRoFUsyaBZHQKY2GgRsdkt1fZQoaAZoCWgPQwjRPesaLQfSv5SGlFKUaBVLMmgWR0CmNdT8P4EfdX2UKGgGaAloD0MIAtNp3QY17L+UhpRSlGgVSzJoFkdApjfouAZsK3V9lChoBmgJaA9DCDOkiuJVVuK/lIaUUpRoFUsyaBZHQKY3pBEa2nd1fZQoaAZoCWgPQwg164zvi0vUv5SGlFKUaBVLMmgWR0CmN2OOjqOcdX2UKGgGaAloD0MIgufewyXH3L+UhpRSlGgVSzJoFkdApjcfjbSJCXV9lChoBmgJaA9DCDOl9bcEYOS/lIaUUpRoFUsyaBZHQKY5HbblA/t1fZQoaAZoCWgPQwi8sDVbecnQv5SGlFKUaBVLMmgWR0CmONf8l5WzdX2UKGgGaAloD0MIeF4qNuZ12r+UhpRSlGgVSzJoFkdApjiWRs/IKnV9lChoBmgJaA9DCOqymNh8XNC/lIaUUpRoFUsyaBZHQKY4UPaL4vh1fZQoaAZoCWgPQwiwOQfPhCbcv5SGlFKUaBVLMmgWR0CmOluvUz9CdX2UKGgGaAloD0MIXDgQkgXM5b+UhpRSlGgVSzJoFkdApjoVyPuG9HV9lChoBmgJaA9DCAZKCiyAKeK/lIaUUpRoFUsyaBZHQKY50/CZWq91fZQoaAZoCWgPQwhQUIpW7gXcv5SGlFKUaBVLMmgWR0CmOY6lLvkSdX2UKGgGaAloD0MI6GuWy0bn4b+UhpRSlGgVSzJoFkdApjvFc4YJmnV9lChoBmgJaA9DCJZ2ai43mOS/lIaUUpRoFUsyaBZHQKY7f6X0Gu91fZQoaAZoCWgPQwheLXdmguHmv5SGlFKUaBVLMmgWR0CmOz66jFhodX2UKGgGaAloD0MIBOj3/ZsX4L+UhpRSlGgVSzJoFkdApjr5kCmuT3V9lChoBmgJaA9DCH+mXrcIjN2/lIaUUpRoFUsyaBZHQKY8/cry1/l1fZQoaAZoCWgPQwgDz72HS47fv5SGlFKUaBVLMmgWR0CmPLfgiu+zdX2UKGgGaAloD0MIe8A8ZMqH5r+UhpRSlGgVSzJoFkdApjx190A93nV9lChoBmgJaA9DCKvnpPeNL+C/lIaUUpRoFUsyaBZHQKY8MLDQ7cR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (282 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.5243141188751906, "std_reward": 0.1861491395882837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T21:33:00.926781"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d46f9d23eec93a68eb08864e83cb6e579860ea99a970f24387ca75e3a344a551
3
+ size 3212