File size: 2,422 Bytes
982287f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: mdeberta-v3-base-sst2-1
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: tmnam20/VieGLUE/SST2
      type: tmnam20/VieGLUE
      config: sst2
      split: validation
      args: sst2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8922018348623854
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mdeberta-v3-base-sst2-1

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3789
- Accuracy: 0.8922

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3138        | 0.24  | 500  | 0.3016          | 0.8761   |
| 0.2693        | 0.48  | 1000 | 0.3624          | 0.8911   |
| 0.2359        | 0.71  | 1500 | 0.3470          | 0.8739   |
| 0.2584        | 0.95  | 2000 | 0.2878          | 0.8911   |
| 0.1774        | 1.19  | 2500 | 0.3204          | 0.9048   |
| 0.1921        | 1.43  | 3000 | 0.3878          | 0.8899   |
| 0.1822        | 1.66  | 3500 | 0.3444          | 0.9002   |
| 0.1772        | 1.9   | 4000 | 0.3351          | 0.8968   |
| 0.1368        | 2.14  | 4500 | 0.3350          | 0.9060   |
| 0.1259        | 2.38  | 5000 | 0.3967          | 0.8968   |
| 0.107         | 2.61  | 5500 | 0.3937          | 0.8945   |
| 0.1371        | 2.85  | 6000 | 0.3743          | 0.8968   |


### Framework versions

- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0