--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-qqp-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8946326984912194 - name: F1 type: f1 value: 0.858697094334616 --- # xlm-roberta-base-qqp-100 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2785 - Accuracy: 0.8946 - F1: 0.8587 - Combined Score: 0.8767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3304 | 0.44 | 5000 | 0.3286 | 0.8591 | 0.8046 | 0.8318 | | 0.2856 | 0.88 | 10000 | 0.2910 | 0.8744 | 0.8273 | 0.8509 | | 0.2795 | 1.32 | 15000 | 0.2818 | 0.8808 | 0.8413 | 0.8610 | | 0.2492 | 1.76 | 20000 | 0.2750 | 0.8863 | 0.8484 | 0.8674 | | 0.2093 | 2.2 | 25000 | 0.2791 | 0.8919 | 0.8542 | 0.8730 | | 0.2022 | 2.64 | 30000 | 0.2926 | 0.8928 | 0.8566 | 0.8747 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0