model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.dev.json +0 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/bertweet-base-tweetner7-2020
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6405933917734322
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6230870135548754
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6591119333950046
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5944351160023098
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5741906773305591
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6180335313677364
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7790952514751335
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7577612592916484
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.8016653174511391
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6638023630504833
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6878130217028381
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6414115204981837
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6240651348448572
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6445261805050383
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.6088211190017436
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7773301101262422
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.8056792873051225
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7509081473793461
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/bertweet-base-tweetner7-2020
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2020` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6405933917734322
|
94 |
+
- Precision (micro): 0.6230870135548754
|
95 |
+
- Recall (micro): 0.6591119333950046
|
96 |
+
- F1 (macro): 0.5944351160023098
|
97 |
+
- Precision (macro): 0.5741906773305591
|
98 |
+
- Recall (macro): 0.6180335313677364
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5161987041036716
|
104 |
+
- creative_work: 0.4572468162522741
|
105 |
+
- event: 0.4586907449209932
|
106 |
+
- group: 0.5974197816738339
|
107 |
+
- location: 0.6470211402946828
|
108 |
+
- person: 0.8270704122582998
|
109 |
+
- product: 0.6573982125124131
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.631778937808505, 0.6496155272705774]
|
114 |
+
- 95%: [0.6304400232899813, 0.6514114604724054]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.631778937808505, 0.6496155272705774]
|
117 |
+
- 95%: [0.6304400232899813, 0.6514114604724054]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-base-tweetner7-2020/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/bertweet-base-tweetner7-2020/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/bertweet-base-tweetner7-2020")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2020
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: vinai/bertweet-base
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-base-tweetner7-2020/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2020.dev": {"micro/f1": 0.6461870115871734, "micro/f1_ci": {}, "micro/recall": 0.6264367816091954, "micro/precision": 0.6672231496939344, "macro/f1": 0.5926978856418852, "macro/f1_ci": {}, "macro/recall": 0.5761073706964339, "macro/precision": 0.61172737557305, "per_entity_metric": {"corporation": {"f1": 0.48186528497409326, "f1_ci": {}, "precision": 0.5081967213114754, "recall": 0.458128078817734}, "creative_work": {"f1": 0.5530864197530865, "f1_ci": {}, "precision": 0.5685279187817259, "recall": 0.5384615384615384}, "event": {"f1": 0.40490797546012275, "f1_ci": {}, "precision": 0.4248927038626609, "recall": 0.38671875}, "group": {"f1": 0.5560747663551402, "f1_ci": {}, "precision": 0.5920398009950248, "recall": 0.5242290748898678}, "location": {"f1": 0.6296296296296297, "f1_ci": {}, "precision": 0.6040609137055838, "recall": 0.6574585635359116}, "person": {"f1": 0.8683760683760683, "f1_ci": {}, "precision": 0.8881118881118881, "recall": 0.8494983277591973}, "product": {"f1": 0.654945054945055, "f1_ci": {}, "precision": 0.6962616822429907, "recall": 0.6182572614107884}}}, "2021.test": {"micro/f1": 0.6405933917734322, "micro/f1_ci": {"90": [0.631778937808505, 0.6496155272705774], "95": [0.6304400232899813, 0.6514114604724054]}, "micro/recall": 0.6591119333950046, "micro/precision": 0.6230870135548754, "macro/f1": 0.5944351160023098, "macro/f1_ci": {"90": [0.5847208708923466, 0.603808377698836], "95": [0.5828546488018534, 0.6052274662051181]}, "macro/recall": 0.6180335313677364, "macro/precision": 0.5741906773305591, "per_entity_metric": {"corporation": {"f1": 0.5161987041036716, "f1_ci": {"90": [0.49180141685517725, 0.5412822594794634], "95": [0.4872053907697826, 0.5464205205875101]}, "precision": 0.5021008403361344, "recall": 0.5311111111111111}, "creative_work": {"f1": 0.4572468162522741, "f1_ci": {"90": [0.4263245047046743, 0.48619332184333874], "95": [0.4203299955901526, 0.49227302083088703]}, "precision": 0.4106753812636166, "recall": 0.5157318741450069}, "event": {"f1": 0.4586907449209932, "f1_ci": {"90": [0.4353521868871257, 0.48032375354584356], "95": [0.4313319263983663, 0.4842758616893962]}, "precision": 0.4551971326164875, "recall": 0.462238398544131}, "group": {"f1": 0.5974197816738339, "f1_ci": {"90": [0.5762787240136122, 0.618982083736629], "95": [0.5733679043193478, 0.62334357181611]}, "precision": 0.6, "recall": 0.5948616600790514}, "location": {"f1": 0.6470211402946828, "f1_ci": {"90": [0.6202857142857143, 0.6734338120728754], "95": [0.613022658886491, 0.6770613077175826]}, "precision": 0.5976331360946746, "recall": 0.7053072625698324}, "person": {"f1": 0.8270704122582998, "f1_ci": {"90": [0.8161884707751226, 0.8380467499055994], "95": [0.8142470822597432, 0.8396568324466097]}, "precision": 0.8184115523465704, "recall": 0.8359144542772862}, "product": {"f1": 0.6573982125124131, "f1_ci": {"90": [0.6348520899144029, 0.6785714285714285], "95": [0.6316288989365912, 0.6825163014469338]}, "precision": 0.6353166986564299, "recall": 0.6810699588477366}}}, "2020.test": {"micro/f1": 0.6638023630504833, "micro/f1_ci": {"90": [0.6418572016184402, 0.683072873635275], "95": [0.6397231030341602, 0.6878762682463384]}, "micro/recall": 0.6414115204981837, "micro/precision": 0.6878130217028381, "macro/f1": 0.6240651348448572, "macro/f1_ci": {"90": [0.6000726487941666, 0.6450820854370489], "95": [0.5959923653749377, 0.6483570192589765]}, "macro/recall": 0.6088211190017436, "macro/precision": 0.6445261805050383, "per_entity_metric": {"corporation": {"f1": 0.5804749340369394, "f1_ci": {"90": [0.5186940057264247, 0.634421505376344], "95": [0.511232833957553, 0.6458452608142494]}, "precision": 0.5851063829787234, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.5494505494505495, "f1_ci": {"90": [0.49384915088405895, 0.6042839513427749], "95": [0.48414288370363484, 0.6140688259109314]}, "precision": 0.5405405405405406, "recall": 0.5586592178770949}, "event": {"f1": 0.4990403071017275, "f1_ci": {"90": [0.4465795369678865, 0.545831502200961], "95": [0.43690366732838776, 0.5538938053097346]}, "precision": 0.5078125, "recall": 0.49056603773584906}, "group": {"f1": 0.5617977528089888, "f1_ci": {"90": [0.5054113082467208, 0.6175137833864248], "95": [0.49254370765167715, 0.6298707075842308]}, "precision": 0.672645739910314, "recall": 0.48231511254019294}, "location": {"f1": 0.6744868035190615, "f1_ci": {"90": [0.611976320582878, 0.7320256856279911], "95": [0.5962226896592779, 0.740745899102445]}, "precision": 0.6534090909090909, "recall": 0.696969696969697}, "person": {"f1": 0.847545219638243, "f1_ci": {"90": [0.8229540630381673, 0.8695689462301439], "95": [0.818900462962963, 0.874592017212771]}, "precision": 0.8707964601769912, "recall": 0.825503355704698}, "product": {"f1": 0.6556603773584906, "f1_ci": {"90": [0.6023278867102397, 0.7027096864306166], "95": [0.5898495068901802, 0.7139374819254937]}, "precision": 0.6813725490196079, "recall": 0.6318181818181818}}}, "2021.test (span detection)": {"micro/f1": 0.7790952514751335, "micro/f1_ci": {}, "micro/recall": 0.8016653174511391, "micro/precision": 0.7577612592916484, "macro/f1": 0.7790952514751335, "macro/f1_ci": {}, "macro/recall": 0.8016653174511391, "macro/precision": 0.7577612592916484}, "2020.test (span detection)": {"micro/f1": 0.7773301101262422, "micro/f1_ci": {}, "micro/recall": 0.7509081473793461, "micro/precision": 0.8056792873051225, "macro/f1": 0.7773301101262422, "macro/f1_ci": {}, "macro/recall": 0.7509081473793461, "macro/precision": 0.8056792873051225}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6638023630504833, "micro/f1_ci": {"90": [0.6418572016184402, 0.683072873635275], "95": [0.6397231030341602, 0.6878762682463384]}, "micro/recall": 0.6414115204981837, "micro/precision": 0.6878130217028381, "macro/f1": 0.6240651348448572, "macro/f1_ci": {"90": [0.6000726487941666, 0.6450820854370489], "95": [0.5959923653749377, 0.6483570192589765]}, "macro/recall": 0.6088211190017436, "macro/precision": 0.6445261805050383, "per_entity_metric": {"corporation": {"f1": 0.5804749340369394, "f1_ci": {"90": [0.5186940057264247, 0.634421505376344], "95": [0.511232833957553, 0.6458452608142494]}, "precision": 0.5851063829787234, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.5494505494505495, "f1_ci": {"90": [0.49384915088405895, 0.6042839513427749], "95": [0.48414288370363484, 0.6140688259109314]}, "precision": 0.5405405405405406, "recall": 0.5586592178770949}, "event": {"f1": 0.4990403071017275, "f1_ci": {"90": [0.4465795369678865, 0.545831502200961], "95": [0.43690366732838776, 0.5538938053097346]}, "precision": 0.5078125, "recall": 0.49056603773584906}, "group": {"f1": 0.5617977528089888, "f1_ci": {"90": [0.5054113082467208, 0.6175137833864248], "95": [0.49254370765167715, 0.6298707075842308]}, "precision": 0.672645739910314, "recall": 0.48231511254019294}, "location": {"f1": 0.6744868035190615, "f1_ci": {"90": [0.611976320582878, 0.7320256856279911], "95": [0.5962226896592779, 0.740745899102445]}, "precision": 0.6534090909090909, "recall": 0.696969696969697}, "person": {"f1": 0.847545219638243, "f1_ci": {"90": [0.8229540630381673, 0.8695689462301439], "95": [0.818900462962963, 0.874592017212771]}, "precision": 0.8707964601769912, "recall": 0.825503355704698}, "product": {"f1": 0.6556603773584906, "f1_ci": {"90": [0.6023278867102397, 0.7027096864306166], "95": [0.5898495068901802, 0.7139374819254937]}, "precision": 0.6813725490196079, "recall": 0.6318181818181818}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6405933917734322, "micro/f1_ci": {"90": [0.631778937808505, 0.6496155272705774], "95": [0.6304400232899813, 0.6514114604724054]}, "micro/recall": 0.6591119333950046, "micro/precision": 0.6230870135548754, "macro/f1": 0.5944351160023098, "macro/f1_ci": {"90": [0.5847208708923466, 0.603808377698836], "95": [0.5828546488018534, 0.6052274662051181]}, "macro/recall": 0.6180335313677364, "macro/precision": 0.5741906773305591, "per_entity_metric": {"corporation": {"f1": 0.5161987041036716, "f1_ci": {"90": [0.49180141685517725, 0.5412822594794634], "95": [0.4872053907697826, 0.5464205205875101]}, "precision": 0.5021008403361344, "recall": 0.5311111111111111}, "creative_work": {"f1": 0.4572468162522741, "f1_ci": {"90": [0.4263245047046743, 0.48619332184333874], "95": [0.4203299955901526, 0.49227302083088703]}, "precision": 0.4106753812636166, "recall": 0.5157318741450069}, "event": {"f1": 0.4586907449209932, "f1_ci": {"90": [0.4353521868871257, 0.48032375354584356], "95": [0.4313319263983663, 0.4842758616893962]}, "precision": 0.4551971326164875, "recall": 0.462238398544131}, "group": {"f1": 0.5974197816738339, "f1_ci": {"90": [0.5762787240136122, 0.618982083736629], "95": [0.5733679043193478, 0.62334357181611]}, "precision": 0.6, "recall": 0.5948616600790514}, "location": {"f1": 0.6470211402946828, "f1_ci": {"90": [0.6202857142857143, 0.6734338120728754], "95": [0.613022658886491, 0.6770613077175826]}, "precision": 0.5976331360946746, "recall": 0.7053072625698324}, "person": {"f1": 0.8270704122582998, "f1_ci": {"90": [0.8161884707751226, 0.8380467499055994], "95": [0.8142470822597432, 0.8396568324466097]}, "precision": 0.8184115523465704, "recall": 0.8359144542772862}, "product": {"f1": 0.6573982125124131, "f1_ci": {"90": [0.6348520899144029, 0.6785714285714285], "95": [0.6316288989365912, 0.6825163014469338]}, "precision": 0.6353166986564299, "recall": 0.6810699588477366}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7773301101262422, "micro/f1_ci": {}, "micro/recall": 0.7509081473793461, "micro/precision": 0.8056792873051225, "macro/f1": 0.7773301101262422, "macro/f1_ci": {}, "macro/recall": 0.7509081473793461, "macro/precision": 0.8056792873051225}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7790952514751335, "micro/f1_ci": {}, "micro/recall": 0.8016653174511391, "micro/precision": 0.7577612592916484, "macro/f1": 0.7790952514751335, "macro/f1_ci": {}, "macro/recall": 0.8016653174511391, "macro/precision": 0.7577612592916484}
|
eval/prediction.2020.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2020", "dataset_name": null, "local_dataset": null, "model": "vinai/bertweet-base", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|