model update
Browse files- README.md +26 -26
- config.json +1 -1
- eval/metric.json +1 -1
- eval/metric_span.json +1 -1
- eval/prediction.validation.json +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -1
README.md
CHANGED
@@ -18,31 +18,31 @@ model-index:
|
|
18 |
metrics:
|
19 |
- name: F1
|
20 |
type: f1
|
21 |
-
value: 0.
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1 (macro)
|
29 |
type: f1_macro
|
30 |
-
value: 0.
|
31 |
- name: Precision (macro)
|
32 |
type: precision_macro
|
33 |
-
value: 0.
|
34 |
- name: Recall (macro)
|
35 |
type: recall_macro
|
36 |
-
value: 0.
|
37 |
- name: F1 (entity span)
|
38 |
type: f1_entity_span
|
39 |
-
value: 0.
|
40 |
- name: Precision (entity span)
|
41 |
type: precision_entity_span
|
42 |
-
value: 0.
|
43 |
- name: Recall (entity span)
|
44 |
type: recall_entity_span
|
45 |
-
value: 0.
|
46 |
|
47 |
pipeline_tag: token-classification
|
48 |
widget:
|
@@ -55,26 +55,26 @@ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggi
|
|
55 |
[tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
|
56 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
57 |
for more detail). It achieves the following results on the test set:
|
58 |
-
- F1 (micro): 0.
|
59 |
-
- Precision (micro): 0.
|
60 |
-
- Recall (micro): 0.
|
61 |
-
- F1 (macro): 0.
|
62 |
-
- Precision (macro): 0.
|
63 |
-
- Recall (macro): 0.
|
64 |
|
65 |
The per-entity breakdown of the F1 score on the test set are below:
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
69 |
-
-
|
70 |
|
71 |
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
72 |
- F1 (micro):
|
73 |
-
- 90%: [0.
|
74 |
-
- 95%: [0.
|
75 |
- F1 (macro):
|
76 |
-
- 90%: [0.
|
77 |
-
- 95%: [0.
|
78 |
|
79 |
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric.json)
|
80 |
and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric_span.json).
|
@@ -100,14 +100,14 @@ The following hyperparameters were used during training:
|
|
100 |
- dataset_name: None
|
101 |
- local_dataset: None
|
102 |
- model: microsoft/deberta-v3-large
|
103 |
-
- crf:
|
104 |
- max_length: 128
|
105 |
-
- epoch:
|
106 |
- batch_size: 16
|
107 |
- lr: 1e-05
|
108 |
- random_seed: 42
|
109 |
- gradient_accumulation_steps: 4
|
110 |
-
- weight_decay:
|
111 |
- lr_warmup_step_ratio: 0.1
|
112 |
- max_grad_norm: 10.0
|
113 |
|
|
|
18 |
metrics:
|
19 |
- name: F1
|
20 |
type: f1
|
21 |
+
value: 0.7060755336617406
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.738831615120275
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.6761006289308176
|
28 |
- name: F1 (macro)
|
29 |
type: f1_macro
|
30 |
+
value: 0.45092058848834204
|
31 |
- name: Precision (macro)
|
32 |
type: precision_macro
|
33 |
+
value: 0.45426465258085835
|
34 |
- name: Recall (macro)
|
35 |
type: recall_macro
|
36 |
+
value: 0.45582773707773705
|
37 |
- name: F1 (entity span)
|
38 |
type: f1_entity_span
|
39 |
+
value: 0.7293729372937293
|
40 |
- name: Precision (entity span)
|
41 |
type: precision_entity_span
|
42 |
+
value: 0.7594501718213058
|
43 |
- name: Recall (entity span)
|
44 |
type: recall_entity_span
|
45 |
+
value: 0.7015873015873015
|
46 |
|
47 |
pipeline_tag: token-classification
|
48 |
widget:
|
|
|
55 |
[tner/fin](https://huggingface.co/datasets/tner/fin) dataset.
|
56 |
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
57 |
for more detail). It achieves the following results on the test set:
|
58 |
+
- F1 (micro): 0.7060755336617406
|
59 |
+
- Precision (micro): 0.738831615120275
|
60 |
+
- Recall (micro): 0.6761006289308176
|
61 |
+
- F1 (macro): 0.45092058848834204
|
62 |
+
- Precision (macro): 0.45426465258085835
|
63 |
+
- Recall (macro): 0.45582773707773705
|
64 |
|
65 |
The per-entity breakdown of the F1 score on the test set are below:
|
66 |
+
- location: 0.4000000000000001
|
67 |
+
- organization: 0.5762711864406779
|
68 |
+
- other: 0.0
|
69 |
+
- person: 0.8274111675126904
|
70 |
|
71 |
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
72 |
- F1 (micro):
|
73 |
+
- 90%: [0.6370316240330781, 0.7718233002182738]
|
74 |
+
- 95%: [0.6236274300363168, 0.7857205513784461]
|
75 |
- F1 (macro):
|
76 |
+
- 90%: [0.6370316240330781, 0.7718233002182738]
|
77 |
+
- 95%: [0.6236274300363168, 0.7857205513784461]
|
78 |
|
79 |
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric.json)
|
80 |
and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric_span.json).
|
|
|
100 |
- dataset_name: None
|
101 |
- local_dataset: None
|
102 |
- model: microsoft/deberta-v3-large
|
103 |
+
- crf: True
|
104 |
- max_length: 128
|
105 |
+
- epoch: 15
|
106 |
- batch_size: 16
|
107 |
- lr: 1e-05
|
108 |
- random_seed: 42
|
109 |
- gradient_accumulation_steps: 4
|
110 |
+
- weight_decay: None
|
111 |
- lr_warmup_step_ratio: 0.1
|
112 |
- max_grad_norm: 10.0
|
113 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "tner_ckpt/fin_deberta_v3_large/
|
3 |
"architectures": [
|
4 |
"DebertaV2ForTokenClassification"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "tner_ckpt/fin_deberta_v3_large/model_rcsnba/epoch_5",
|
3 |
"architectures": [
|
4 |
"DebertaV2ForTokenClassification"
|
5 |
],
|
eval/metric.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"micro/f1": 0.
|
|
|
1 |
+
{"micro/f1": 0.7060755336617406, "micro/f1_ci": {"90": [0.6370316240330781, 0.7718233002182738], "95": [0.6236274300363168, 0.7857205513784461]}, "micro/recall": 0.6761006289308176, "micro/precision": 0.738831615120275, "macro/f1": 0.45092058848834204, "macro/f1_ci": {"90": [0.39899778804703784, 0.5011709891949974], "95": [0.3874931369771246, 0.5136520300021123]}, "macro/recall": 0.45582773707773705, "macro/precision": 0.45426465258085835, "per_entity_metric": {"location": {"f1": 0.4000000000000001, "f1_ci": {"90": [0.2857142857142857, 0.5091682785299806], "95": [0.2608695652173913, 0.5263157894736842]}, "precision": 0.35294117647058826, "recall": 0.46153846153846156}, "organization": {"f1": 0.5762711864406779, "f1_ci": {"90": [0.43634996582365004, 0.7079700983894904], "95": [0.4077472341386317, 0.7342135894078278]}, "precision": 0.5483870967741935, "recall": 0.6071428571428571}, "other": {"f1": 0.0, "f1_ci": {"90": [NaN, NaN], "95": [NaN, NaN]}, "precision": 0.0, "recall": 0.0}, "person": {"f1": 0.8274111675126904, "f1_ci": {"90": [0.7651849599675686, 0.8840794949060123], "95": [0.7459896055540471, 0.8967844202898553]}, "precision": 0.9157303370786517, "recall": 0.7546296296296297}}}
|
eval/metric_span.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"micro/f1": 0.
|
|
|
1 |
+
{"micro/f1": 0.7293729372937293, "micro/f1_ci": {"90": [0.6546727092010601, 0.7960558252427186], "95": [0.6427420490321417, 0.8090595359078592]}, "micro/recall": 0.7015873015873015, "micro/precision": 0.7594501718213058, "macro/f1": 0.7293729372937293, "macro/f1_ci": {"90": [0.6546727092010601, 0.7960558252427186], "95": [0.6427420490321417, 0.8090595359078592]}, "macro/recall": 0.7015873015873015, "macro/precision": 0.7594501718213058}
|
eval/prediction.validation.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bad3729608b27d27e70df820e6cc552dbe034d5ed064cbe4ac5c1f6e5a008727
|
3 |
+
size 1736223023
|
tokenizer_config.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"do_lower_case": false,
|
5 |
"eos_token": "[SEP]",
|
6 |
"mask_token": "[MASK]",
|
7 |
-
"name_or_path": "tner_ckpt/fin_deberta_v3_large/
|
8 |
"pad_token": "[PAD]",
|
9 |
"sep_token": "[SEP]",
|
10 |
"sp_model_kwargs": {},
|
|
|
4 |
"do_lower_case": false,
|
5 |
"eos_token": "[SEP]",
|
6 |
"mask_token": "[MASK]",
|
7 |
+
"name_or_path": "tner_ckpt/fin_deberta_v3_large/model_rcsnba/epoch_5",
|
8 |
"pad_token": "[PAD]",
|
9 |
"sep_token": "[SEP]",
|
10 |
"sp_model_kwargs": {},
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"dataset": ["tner/fin"], "dataset_split": "train", "dataset_name": null, "local_dataset": null, "model": "microsoft/deberta-v3-large", "crf":
|
|
|
1 |
+
{"dataset": ["tner/fin"], "dataset_split": "train", "dataset_name": null, "local_dataset": null, "model": "microsoft/deberta-v3-large", "crf": true, "max_length": 128, "epoch": 15, "batch_size": 16, "lr": 1e-05, "random_seed": 42, "gradient_accumulation_steps": 4, "weight_decay": null, "lr_warmup_step_ratio": 0.1, "max_grad_norm": 10.0}
|