model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-2019-90m-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.6329255975760296
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6147809025506867
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6521739130434783
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.5849737353611323
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5655720751091778
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6073811457896877
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7735817294203468
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7513625463265751
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7971550826876374
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6428571428571428
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.666110183639399
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6211728074727556
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6067120703105228
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6269481984991956
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5890178249768797
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7620837808807734
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7896494156928213
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.736377789309808
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-2019-90m-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.6329255975760296
|
94 |
+
- Precision (micro): 0.6147809025506867
|
95 |
+
- Recall (micro): 0.6521739130434783
|
96 |
+
- F1 (macro): 0.5849737353611323
|
97 |
+
- Precision (macro): 0.5655720751091778
|
98 |
+
- Recall (macro): 0.6073811457896877
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5055837563451777
|
104 |
+
- creative_work: 0.41676942046855736
|
105 |
+
- event: 0.45696539485359355
|
106 |
+
- group: 0.599078341013825
|
107 |
+
- location: 0.6480218281036835
|
108 |
+
- person: 0.8302235359320156
|
109 |
+
- product: 0.6381738708110735
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.6241107966406728, 0.6420422564843195]
|
114 |
+
- 95%: [0.6227081381578177, 0.6435080538043557]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.6241107966406728, 0.6420422564843195]
|
117 |
+
- 95%: [0.6227081381578177, 0.6435080538043557]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-2019-90m-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-2019-90m
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 0.0001
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.6430903155603918, "micro/f1_ci": {}, "micro/recall": 0.6310731446876668, "micro/precision": 0.6555740432612313, "macro/f1": 0.5957476328680672, "macro/f1_ci": {}, "macro/recall": 0.5839083840160486, "macro/precision": 0.6084750980060624, "per_entity_metric": {"corporation": {"f1": 0.5758354755784061, "f1_ci": {}, "precision": 0.5714285714285714, "recall": 0.5803108808290155}, "creative_work": {"f1": 0.44236760124610586, "f1_ci": {}, "precision": 0.44654088050314467, "recall": 0.4382716049382716}, "event": {"f1": 0.391578947368421, "f1_ci": {}, "precision": 0.4043478260869565, "recall": 0.3795918367346939}, "group": {"f1": 0.622093023255814, "f1_ci": {}, "precision": 0.6257309941520468, "recall": 0.6184971098265896}, "location": {"f1": 0.6346153846153847, "f1_ci": {}, "precision": 0.6644295302013423, "recall": 0.6073619631901841}, "person": {"f1": 0.8595988538681949, "f1_ci": {}, "precision": 0.8754863813229572, "recall": 0.8442776735459663}, "product": {"f1": 0.6441441441441441, "f1_ci": {}, "precision": 0.6713615023474179, "recall": 0.6190476190476191}}}, "2021.test": {"micro/f1": 0.6329255975760296, "micro/f1_ci": {"90": [0.6241107966406728, 0.6420422564843195], "95": [0.6227081381578177, 0.6435080538043557]}, "micro/recall": 0.6521739130434783, "micro/precision": 0.6147809025506867, "macro/f1": 0.5849737353611323, "macro/f1_ci": {"90": [0.5763837020363822, 0.5947111988264823], "95": [0.5742937353061618, 0.5962661166656056]}, "macro/recall": 0.6073811457896877, "macro/precision": 0.5655720751091778, "per_entity_metric": {"corporation": {"f1": 0.5055837563451777, "f1_ci": {"90": [0.48112880503144656, 0.5305129060228105], "95": [0.47521529459960105, 0.5351315949731495]}, "precision": 0.4654205607476635, "recall": 0.5533333333333333}, "creative_work": {"f1": 0.41676942046855736, "f1_ci": {"90": [0.38737414150104255, 0.4471280364372469], "95": [0.381117185936746, 0.4518568526740165]}, "precision": 0.3793490460157127, "recall": 0.46238030095759236}, "event": {"f1": 0.45696539485359355, "f1_ci": {"90": [0.43451377299237326, 0.48098433064395635], "95": [0.4312793014907832, 0.48593287418465386]}, "precision": 0.4458874458874459, "recall": 0.46860782529572337}, "group": {"f1": 0.599078341013825, "f1_ci": {"90": [0.5799007693202035, 0.6205978336770757], "95": [0.5763590616997798, 0.6235043929757479]}, "precision": 0.5986842105263158, "recall": 0.5994729907773386}, "location": {"f1": 0.6480218281036835, "f1_ci": {"90": [0.6205056231580423, 0.6749297649471397], "95": [0.6175627543763568, 0.6813266130099813]}, "precision": 0.6333333333333333, "recall": 0.6634078212290503}, "person": {"f1": 0.8302235359320156, "f1_ci": {"90": [0.8202314881837767, 0.8410008455396478], "95": [0.8177612076669796, 0.8430586034166829]}, "precision": 0.8319141058867087, "recall": 0.8285398230088495}, "product": {"f1": 0.6381738708110735, "f1_ci": {"90": [0.6169357700291059, 0.6600499792631749], "95": [0.6131003018520063, 0.664773006102066]}, "precision": 0.6044158233670653, "recall": 0.6759259259259259}}}, "2020.test": {"micro/f1": 0.6428571428571428, "micro/f1_ci": {"90": [0.6218825133568143, 0.6608444099298781], "95": [0.6185707589214373, 0.665192796014874]}, "micro/recall": 0.6211728074727556, "micro/precision": 0.666110183639399, "macro/f1": 0.6067120703105228, "macro/f1_ci": {"90": [0.5847083370483181, 0.6258826342571657], "95": [0.5815028092972286, 0.6293428524288749]}, "macro/recall": 0.5890178249768797, "macro/precision": 0.6269481984991956, "per_entity_metric": {"corporation": {"f1": 0.5684754521963824, "f1_ci": {"90": [0.51461143224149, 0.6213723432170033], "95": [0.5048933935276239, 0.6302796758302875]}, "precision": 0.5612244897959183, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.4887640449438202, "f1_ci": {"90": [0.42513867449237497, 0.5449838989348527], "95": [0.4129533747193237, 0.5546218487394958]}, "precision": 0.4915254237288136, "recall": 0.4860335195530726}, "event": {"f1": 0.45364891518737677, "f1_ci": {"90": [0.4032586558044806, 0.50105253276257], "95": [0.3941893490609532, 0.5113654082404082]}, "precision": 0.47520661157024796, "recall": 0.4339622641509434}, "group": {"f1": 0.5502645502645503, "f1_ci": {"90": [0.49639891028353794, 0.5996135198323417], "95": [0.4862892256873603, 0.610242001349384]}, "precision": 0.609375, "recall": 0.5016077170418006}, "location": {"f1": 0.7174603174603175, "f1_ci": {"90": [0.66, 0.7673751141712922], "95": [0.6483867450304767, 0.7759562841530054]}, "precision": 0.7533333333333333, "recall": 0.6848484848484848}, "person": {"f1": 0.8229166666666667, "f1_ci": {"90": [0.7947803203661327, 0.8469858791026068], "95": [0.7899859677143346, 0.8515427066348928]}, "precision": 0.8525179856115108, "recall": 0.7953020134228188}, "product": {"f1": 0.6454545454545455, "f1_ci": {"90": [0.6, 0.687823236296879], "95": [0.590903203014602, 0.695656930834364]}, "precision": 0.6454545454545455, "recall": 0.6454545454545455}}}, "2021.test (span detection)": {"micro/f1": 0.7735817294203468, "micro/f1_ci": {}, "micro/recall": 0.7971550826876374, "micro/precision": 0.7513625463265751, "macro/f1": 0.7735817294203468, "macro/f1_ci": {}, "macro/recall": 0.7971550826876374, "macro/precision": 0.7513625463265751}, "2020.test (span detection)": {"micro/f1": 0.7620837808807734, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7896494156928213, "macro/f1": 0.7620837808807734, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7896494156928213}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6428571428571428, "micro/f1_ci": {"90": [0.6218825133568143, 0.6608444099298781], "95": [0.6185707589214373, 0.665192796014874]}, "micro/recall": 0.6211728074727556, "micro/precision": 0.666110183639399, "macro/f1": 0.6067120703105228, "macro/f1_ci": {"90": [0.5847083370483181, 0.6258826342571657], "95": [0.5815028092972286, 0.6293428524288749]}, "macro/recall": 0.5890178249768797, "macro/precision": 0.6269481984991956, "per_entity_metric": {"corporation": {"f1": 0.5684754521963824, "f1_ci": {"90": [0.51461143224149, 0.6213723432170033], "95": [0.5048933935276239, 0.6302796758302875]}, "precision": 0.5612244897959183, "recall": 0.5759162303664922}, "creative_work": {"f1": 0.4887640449438202, "f1_ci": {"90": [0.42513867449237497, 0.5449838989348527], "95": [0.4129533747193237, 0.5546218487394958]}, "precision": 0.4915254237288136, "recall": 0.4860335195530726}, "event": {"f1": 0.45364891518737677, "f1_ci": {"90": [0.4032586558044806, 0.50105253276257], "95": [0.3941893490609532, 0.5113654082404082]}, "precision": 0.47520661157024796, "recall": 0.4339622641509434}, "group": {"f1": 0.5502645502645503, "f1_ci": {"90": [0.49639891028353794, 0.5996135198323417], "95": [0.4862892256873603, 0.610242001349384]}, "precision": 0.609375, "recall": 0.5016077170418006}, "location": {"f1": 0.7174603174603175, "f1_ci": {"90": [0.66, 0.7673751141712922], "95": [0.6483867450304767, 0.7759562841530054]}, "precision": 0.7533333333333333, "recall": 0.6848484848484848}, "person": {"f1": 0.8229166666666667, "f1_ci": {"90": [0.7947803203661327, 0.8469858791026068], "95": [0.7899859677143346, 0.8515427066348928]}, "precision": 0.8525179856115108, "recall": 0.7953020134228188}, "product": {"f1": 0.6454545454545455, "f1_ci": {"90": [0.6, 0.687823236296879], "95": [0.590903203014602, 0.695656930834364]}, "precision": 0.6454545454545455, "recall": 0.6454545454545455}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6329255975760296, "micro/f1_ci": {"90": [0.6241107966406728, 0.6420422564843195], "95": [0.6227081381578177, 0.6435080538043557]}, "micro/recall": 0.6521739130434783, "micro/precision": 0.6147809025506867, "macro/f1": 0.5849737353611323, "macro/f1_ci": {"90": [0.5763837020363822, 0.5947111988264823], "95": [0.5742937353061618, 0.5962661166656056]}, "macro/recall": 0.6073811457896877, "macro/precision": 0.5655720751091778, "per_entity_metric": {"corporation": {"f1": 0.5055837563451777, "f1_ci": {"90": [0.48112880503144656, 0.5305129060228105], "95": [0.47521529459960105, 0.5351315949731495]}, "precision": 0.4654205607476635, "recall": 0.5533333333333333}, "creative_work": {"f1": 0.41676942046855736, "f1_ci": {"90": [0.38737414150104255, 0.4471280364372469], "95": [0.381117185936746, 0.4518568526740165]}, "precision": 0.3793490460157127, "recall": 0.46238030095759236}, "event": {"f1": 0.45696539485359355, "f1_ci": {"90": [0.43451377299237326, 0.48098433064395635], "95": [0.4312793014907832, 0.48593287418465386]}, "precision": 0.4458874458874459, "recall": 0.46860782529572337}, "group": {"f1": 0.599078341013825, "f1_ci": {"90": [0.5799007693202035, 0.6205978336770757], "95": [0.5763590616997798, 0.6235043929757479]}, "precision": 0.5986842105263158, "recall": 0.5994729907773386}, "location": {"f1": 0.6480218281036835, "f1_ci": {"90": [0.6205056231580423, 0.6749297649471397], "95": [0.6175627543763568, 0.6813266130099813]}, "precision": 0.6333333333333333, "recall": 0.6634078212290503}, "person": {"f1": 0.8302235359320156, "f1_ci": {"90": [0.8202314881837767, 0.8410008455396478], "95": [0.8177612076669796, 0.8430586034166829]}, "precision": 0.8319141058867087, "recall": 0.8285398230088495}, "product": {"f1": 0.6381738708110735, "f1_ci": {"90": [0.6169357700291059, 0.6600499792631749], "95": [0.6131003018520063, 0.664773006102066]}, "precision": 0.6044158233670653, "recall": 0.6759259259259259}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7620837808807734, "micro/f1_ci": {}, "micro/recall": 0.736377789309808, "micro/precision": 0.7896494156928213, "macro/f1": 0.7620837808807734, "macro/f1_ci": {}, "macro/recall": 0.736377789309808, "macro/precision": 0.7896494156928213}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7735817294203468, "micro/f1_ci": {}, "micro/recall": 0.7971550826876374, "micro/precision": 0.7513625463265751, "macro/f1": 0.7735817294203468, "macro/f1_ci": {}, "macro/recall": 0.7971550826876374, "macro/precision": 0.7513625463265751}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-2019-90m", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 0.0001, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|