model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.dev.json +0 -0
- eval/prediction.2021.test.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.655146764318819
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6484313059236607
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.6620027752081407
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.60565538970149
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5978135601251405
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6152969312272543
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7802700846875715
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7722278853777325
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7884815542962877
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6529060293318849
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6849002849002849
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6237675142708874
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6127864056494463
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6440791059118922
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5885664058069695
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7588267246061923
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.796011396011396
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.724961079398028
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [tner/twitter-roberta-base-dec2020-tweetner-2020](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner-2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_2021` split). The model is first fine-tuned on `train_2020`, and then continuously fine-tuned on `train_2021`.
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.655146764318819
|
94 |
+
- Precision (micro): 0.6484313059236607
|
95 |
+
- Recall (micro): 0.6620027752081407
|
96 |
+
- F1 (macro): 0.60565538970149
|
97 |
+
- Precision (macro): 0.5978135601251405
|
98 |
+
- Recall (macro): 0.6152969312272543
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.5356371490280778
|
104 |
+
- creative_work: 0.4529526281635302
|
105 |
+
- event: 0.4692272096251735
|
106 |
+
- group: 0.610738255033557
|
107 |
+
- location: 0.6627831715210356
|
108 |
+
- person: 0.8433472499546196
|
109 |
+
- product: 0.6649020645844361
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.646485917836786, 0.6644401423537809]
|
114 |
+
- 95%: [0.6449507873997479, 0.6659444015725502]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.646485917836786, 0.6644401423537809]
|
117 |
+
- 95%: [0.6449507873997479, 0.6659444015725502]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_2021
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: tner/twitter-roberta-base-dec2020-tweetner-2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-06
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.3
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020-2021-continuous/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"2021.dev": {"micro/f1": 0.6494949494949495, "micro/f1_ci": {}, "micro/recall": 0.643, "micro/precision": 0.6561224489795918, "macro/f1": 0.6068039027139369, "macro/f1_ci": {}, "macro/recall": 0.605166519640185, "macro/precision": 0.6118349239758869, "per_entity_metric": {"corporation": {"f1": 0.6176470588235294, "f1_ci": {}, "precision": 0.6176470588235294, "recall": 0.6176470588235294}, "creative_work": {"f1": 0.4713375796178344, "f1_ci": {}, "precision": 0.4457831325301205, "recall": 0.5}, "event": {"f1": 0.3951612903225807, "f1_ci": {}, "precision": 0.4188034188034188, "recall": 0.37404580152671757}, "group": {"f1": 0.6267281105990783, "f1_ci": {}, "precision": 0.6570048309178744, "recall": 0.5991189427312775}, "location": {"f1": 0.6233766233766234, "f1_ci": {}, "precision": 0.5853658536585366, "recall": 0.6666666666666666}, "person": {"f1": 0.8304498269896194, "f1_ci": {}, "precision": 0.8135593220338984, "recall": 0.8480565371024735}, "product": {"f1": 0.6829268292682927, "f1_ci": {}, "precision": 0.7446808510638298, "recall": 0.6306306306306306}}}, "2021.test": {"micro/f1": 0.655146764318819, "micro/f1_ci": {"90": [0.646485917836786, 0.6644401423537809], "95": [0.6449507873997479, 0.6659444015725502]}, "micro/recall": 0.6620027752081407, "micro/precision": 0.6484313059236607, "macro/f1": 0.60565538970149, "macro/f1_ci": {"90": [0.5958609226036335, 0.615029496768845], "95": [0.59347853460072, 0.6177128475619766]}, "macro/recall": 0.6152969312272543, "macro/precision": 0.5978135601251405, "per_entity_metric": {"corporation": {"f1": 0.5356371490280778, "f1_ci": {"90": [0.5114094871504585, 0.5608433653038019], "95": [0.5052604332153696, 0.5661445279866333]}, "precision": 0.5210084033613446, "recall": 0.5511111111111111}, "creative_work": {"f1": 0.4529526281635302, "f1_ci": {"90": [0.42236024844720493, 0.48234065608829313], "95": [0.4175525495344849, 0.48726058770701636]}, "precision": 0.4308641975308642, "recall": 0.4774281805745554}, "event": {"f1": 0.4692272096251735, "f1_ci": {"90": [0.44730383541051455, 0.4914571996286822], "95": [0.44300273768043796, 0.497628418609345]}, "precision": 0.4774011299435028, "recall": 0.46132848043676067}, "group": {"f1": 0.610738255033557, "f1_ci": {"90": [0.5911010424446823, 0.6317182638626475], "95": [0.587397323488694, 0.636247821945832]}, "precision": 0.6224350205198358, "recall": 0.5994729907773386}, "location": {"f1": 0.6627831715210356, "f1_ci": {"90": [0.6361094283387652, 0.6906877216895649], "95": [0.6284165623933567, 0.6944596639532455]}, "precision": 0.617611580217129, "recall": 0.7150837988826816}, "person": {"f1": 0.8433472499546196, "f1_ci": {"90": [0.8330629714737499, 0.8537574855967393], "95": [0.8310271369505687, 0.8553120874462692]}, "precision": 0.8305327136217375, "recall": 0.8565634218289085}, "product": {"f1": 0.6649020645844361, "f1_ci": {"90": [0.6436639052703277, 0.6861324260947763], "95": [0.639253505828489, 0.6900270969352551]}, "precision": 0.6848418756815703, "recall": 0.6460905349794238}}}, "2020.test": {"micro/f1": 0.6529060293318849, "micro/f1_ci": {"90": [0.6320560339514061, 0.6714840239575703], "95": [0.6277113779725418, 0.6759792334494775]}, "micro/recall": 0.6237675142708874, "micro/precision": 0.6849002849002849, "macro/f1": 0.6127864056494463, "macro/f1_ci": {"90": [0.5897169937547521, 0.6334131005387055], "95": [0.5857108200385485, 0.6376942274138916]}, "macro/recall": 0.5885664058069695, "macro/precision": 0.6440791059118922, "per_entity_metric": {"corporation": {"f1": 0.5925925925925924, "f1_ci": {"90": [0.533721414937729, 0.6480675262204496], "95": [0.5207716966045063, 0.6541185932818168]}, "precision": 0.5989304812834224, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5558739255014327, "f1_ci": {"90": [0.4984564943253468, 0.607918557688304], "95": [0.4885970084990079, 0.6177219060891107]}, "precision": 0.5705882352941176, "recall": 0.5418994413407822}, "event": {"f1": 0.4383561643835617, "f1_ci": {"90": [0.3847710023194851, 0.48764285714285716], "95": [0.37720025056234163, 0.49720332993010286]}, "precision": 0.45528455284552843, "recall": 0.4226415094339623}, "group": {"f1": 0.5437616387337058, "f1_ci": {"90": [0.48760765869239764, 0.5993162024857116], "95": [0.47615165631469974, 0.6082547602450746]}, "precision": 0.6460176991150443, "recall": 0.4694533762057878}, "location": {"f1": 0.641399416909621, "f1_ci": {"90": [0.5723443613683027, 0.7030686612965094], "95": [0.5566328196906268, 0.7147551120186363]}, "precision": 0.6179775280898876, "recall": 0.6666666666666666}, "person": {"f1": 0.8407534246575342, "f1_ci": {"90": [0.8133493861413243, 0.8663783854306567], "95": [0.8073137196568275, 0.8716676932880203]}, "precision": 0.8583916083916084, "recall": 0.8238255033557047}, "product": {"f1": 0.6767676767676768, "f1_ci": {"90": [0.6232405642394205, 0.7267706131078224], "95": [0.6133611279563371, 0.7349278036430734]}, "precision": 0.7613636363636364, "recall": 0.6090909090909091}}}, "2021.test (span detection)": {"micro/f1": 0.7802700846875715, "micro/f1_ci": {}, "micro/recall": 0.7884815542962877, "micro/precision": 0.7722278853777325, "macro/f1": 0.7802700846875715, "macro/f1_ci": {}, "macro/recall": 0.7884815542962877, "macro/precision": 0.7722278853777325}, "2020.test (span detection)": {"micro/f1": 0.7588267246061923, "micro/f1_ci": {}, "micro/recall": 0.724961079398028, "micro/precision": 0.796011396011396, "macro/f1": 0.7588267246061923, "macro/f1_ci": {}, "macro/recall": 0.724961079398028, "macro/precision": 0.796011396011396}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6529060293318849, "micro/f1_ci": {"90": [0.6320560339514061, 0.6714840239575703], "95": [0.6277113779725418, 0.6759792334494775]}, "micro/recall": 0.6237675142708874, "micro/precision": 0.6849002849002849, "macro/f1": 0.6127864056494463, "macro/f1_ci": {"90": [0.5897169937547521, 0.6334131005387055], "95": [0.5857108200385485, 0.6376942274138916]}, "macro/recall": 0.5885664058069695, "macro/precision": 0.6440791059118922, "per_entity_metric": {"corporation": {"f1": 0.5925925925925924, "f1_ci": {"90": [0.533721414937729, 0.6480675262204496], "95": [0.5207716966045063, 0.6541185932818168]}, "precision": 0.5989304812834224, "recall": 0.5863874345549738}, "creative_work": {"f1": 0.5558739255014327, "f1_ci": {"90": [0.4984564943253468, 0.607918557688304], "95": [0.4885970084990079, 0.6177219060891107]}, "precision": 0.5705882352941176, "recall": 0.5418994413407822}, "event": {"f1": 0.4383561643835617, "f1_ci": {"90": [0.3847710023194851, 0.48764285714285716], "95": [0.37720025056234163, 0.49720332993010286]}, "precision": 0.45528455284552843, "recall": 0.4226415094339623}, "group": {"f1": 0.5437616387337058, "f1_ci": {"90": [0.48760765869239764, 0.5993162024857116], "95": [0.47615165631469974, 0.6082547602450746]}, "precision": 0.6460176991150443, "recall": 0.4694533762057878}, "location": {"f1": 0.641399416909621, "f1_ci": {"90": [0.5723443613683027, 0.7030686612965094], "95": [0.5566328196906268, 0.7147551120186363]}, "precision": 0.6179775280898876, "recall": 0.6666666666666666}, "person": {"f1": 0.8407534246575342, "f1_ci": {"90": [0.8133493861413243, 0.8663783854306567], "95": [0.8073137196568275, 0.8716676932880203]}, "precision": 0.8583916083916084, "recall": 0.8238255033557047}, "product": {"f1": 0.6767676767676768, "f1_ci": {"90": [0.6232405642394205, 0.7267706131078224], "95": [0.6133611279563371, 0.7349278036430734]}, "precision": 0.7613636363636364, "recall": 0.6090909090909091}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.655146764318819, "micro/f1_ci": {"90": [0.646485917836786, 0.6644401423537809], "95": [0.6449507873997479, 0.6659444015725502]}, "micro/recall": 0.6620027752081407, "micro/precision": 0.6484313059236607, "macro/f1": 0.60565538970149, "macro/f1_ci": {"90": [0.5958609226036335, 0.615029496768845], "95": [0.59347853460072, 0.6177128475619766]}, "macro/recall": 0.6152969312272543, "macro/precision": 0.5978135601251405, "per_entity_metric": {"corporation": {"f1": 0.5356371490280778, "f1_ci": {"90": [0.5114094871504585, 0.5608433653038019], "95": [0.5052604332153696, 0.5661445279866333]}, "precision": 0.5210084033613446, "recall": 0.5511111111111111}, "creative_work": {"f1": 0.4529526281635302, "f1_ci": {"90": [0.42236024844720493, 0.48234065608829313], "95": [0.4175525495344849, 0.48726058770701636]}, "precision": 0.4308641975308642, "recall": 0.4774281805745554}, "event": {"f1": 0.4692272096251735, "f1_ci": {"90": [0.44730383541051455, 0.4914571996286822], "95": [0.44300273768043796, 0.497628418609345]}, "precision": 0.4774011299435028, "recall": 0.46132848043676067}, "group": {"f1": 0.610738255033557, "f1_ci": {"90": [0.5911010424446823, 0.6317182638626475], "95": [0.587397323488694, 0.636247821945832]}, "precision": 0.6224350205198358, "recall": 0.5994729907773386}, "location": {"f1": 0.6627831715210356, "f1_ci": {"90": [0.6361094283387652, 0.6906877216895649], "95": [0.6284165623933567, 0.6944596639532455]}, "precision": 0.617611580217129, "recall": 0.7150837988826816}, "person": {"f1": 0.8433472499546196, "f1_ci": {"90": [0.8330629714737499, 0.8537574855967393], "95": [0.8310271369505687, 0.8553120874462692]}, "precision": 0.8305327136217375, "recall": 0.8565634218289085}, "product": {"f1": 0.6649020645844361, "f1_ci": {"90": [0.6436639052703277, 0.6861324260947763], "95": [0.639253505828489, 0.6900270969352551]}, "precision": 0.6848418756815703, "recall": 0.6460905349794238}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7588267246061923, "micro/f1_ci": {}, "micro/recall": 0.724961079398028, "micro/precision": 0.796011396011396, "macro/f1": 0.7588267246061923, "macro/f1_ci": {}, "macro/recall": 0.724961079398028, "macro/precision": 0.796011396011396}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7802700846875715, "micro/f1_ci": {}, "micro/recall": 0.7884815542962877, "micro/precision": 0.7722278853777325, "macro/f1": 0.7802700846875715, "macro/f1_ci": {}, "macro/recall": 0.7884815542962877, "macro/precision": 0.7722278853777325}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_2021", "dataset_name": null, "local_dataset": null, "model": "tner/twitter-roberta-base-dec2020-tweetner-2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-06, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.3, "max_grad_norm": 1}
|