tnkmr commited on
Commit
dc31fc4
1 Parent(s): a8b7996

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md CHANGED
@@ -1,3 +1,42 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - ja
5
+ tags:
6
+ - music
7
+ - audio
8
+ - audio-to-audio
9
+ - SFI
10
+ datasets:
11
+ - MUSDB18-HQ
12
+ metrics:
13
+ - SDR
14
  ---
15
+
16
+ # Sampling-frequency-independent (SFI) Conv-TasNet trained with the MUSDB18-HQ dataset for music source separation
17
+ This model was proposed in [our IEEE/ACM Trans. ASLP paper](https://doi.org/10.1109/TASLP.2022.3203907) and works well with untrained sampling frequencies by using sampling-frequency-independent convolutional layers with the time domain filter design.
18
+ The latent analog filter is a multiphase gammatone filter.
19
+ It was trained by Tomohiko Nakamura using [the codebase](https://github.com/TomohikoNakamura/sfi_convtasnet)).
20
+ This model was trained with 32 kHz-sampled data but works well with untrained sampling frequencies (e.g., 8, 16 kHz).
21
+
22
+ # License
23
+ MIT
24
+
25
+ # Citation
26
+ Please cite the following paper.
27
+ ```
28
+ @article{KSaito2022IEEEACMTASLP,
29
+ author={Saito, Koichi and Nakamura, Tomohiko and Yatabe, Kohei and Saruwatari, Hiroshi},
30
+ journal = {IEEE/ACM Transactions on Audio, Speech, and Language Processing},
31
+ title = {Sampling-frequency-independent convolutional layer and its application to audio source separation},
32
+ year=2022,
33
+ month=sep,
34
+ volume=30,
35
+ pages={2928--2943},
36
+ doi={10.1109/TASLP.2022.3203907},
37
+ }
38
+ ```
39
+
40
+ # Contents
41
+ - Four trained models (seed=40,42,44,47)
42
+ - Evaluation results (json files obtained with the museval library)