Update README.md
Browse files
README.md
CHANGED
@@ -2,13 +2,14 @@
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
-
pipeline_tag:
|
6 |
inference: false
|
7 |
---
|
8 |
|
9 |
# Monarch Mixer-BERT
|
10 |
|
11 |
-
An 80M checkpoint of M2-BERT, pretrained with sequence length 2048
|
|
|
12 |
|
13 |
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence.
|
14 |
|
@@ -20,8 +21,8 @@ Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instruc
|
|
20 |
|
21 |
You can load this model using Hugging Face `AutoModel`:
|
22 |
```python
|
23 |
-
from transformers import
|
24 |
-
model =
|
25 |
"togethercomputer/m2-bert-80M-2k-retrieval",
|
26 |
trust_remote_code=True
|
27 |
)
|
@@ -30,66 +31,6 @@ model = AutoModelForSequenceClassification.from_pretrained(
|
|
30 |
You should expect to see a large error message about unused parameters for FlashFFTConv.
|
31 |
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main).
|
32 |
|
33 |
-
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768:
|
34 |
-
```python
|
35 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
36 |
-
|
37 |
-
max_seq_length = 2048
|
38 |
-
testing_string = "Every morning, I make a cup of coffee to start my day."
|
39 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
40 |
-
"togethercomputer/m2-bert-80M-2k-retrieval",
|
41 |
-
trust_remote_code=True
|
42 |
-
)
|
43 |
-
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
-
"bert-base-uncased",
|
46 |
-
model_max_length=max_seq_length
|
47 |
-
)
|
48 |
-
input_ids = tokenizer(
|
49 |
-
[testing_string],
|
50 |
-
return_tensors="pt",
|
51 |
-
padding="max_length",
|
52 |
-
return_token_type_ids=False,
|
53 |
-
truncation=True,
|
54 |
-
max_length=max_seq_length
|
55 |
-
)
|
56 |
-
|
57 |
-
outputs = model(**input_ids)
|
58 |
-
embeddings = outputs['sentence_embedding']
|
59 |
-
```
|
60 |
-
|
61 |
-
You can also get embeddings from this model using the Together API as follows (you can find your API key [here](https://api.together.xyz/settings/api-keys)):
|
62 |
-
```python
|
63 |
-
import os
|
64 |
-
import requests
|
65 |
-
|
66 |
-
def generate_together_embeddings(text: str, model_api_string: str, api_key: str):
|
67 |
-
url = "https://api.together.xyz/api/v1/embeddings"
|
68 |
-
headers = {
|
69 |
-
"accept": "application/json",
|
70 |
-
"content-type": "application/json",
|
71 |
-
"Authorization": f"Bearer {api_key}"
|
72 |
-
}
|
73 |
-
session = requests.Session()
|
74 |
-
response = session.post(
|
75 |
-
url,
|
76 |
-
headers=headers,
|
77 |
-
json={
|
78 |
-
"input": text,
|
79 |
-
"model": model_api_string
|
80 |
-
}
|
81 |
-
)
|
82 |
-
if response.status_code != 200:
|
83 |
-
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}")
|
84 |
-
return response.json()['data'][0]['embedding']
|
85 |
-
|
86 |
-
print(generate_together_embeddings(
|
87 |
-
'Hello world',
|
88 |
-
'togethercomputer/m2-bert-80M-2k-retrieval',
|
89 |
-
os.environ['TOGETHER_API_KEY'])[:10]
|
90 |
-
)
|
91 |
-
```
|
92 |
-
|
93 |
## Acknowledgments
|
94 |
|
95 |
Alycia Lee helped with AutoModel support.
|
@@ -104,4 +45,4 @@ If you use this model, or otherwise found our work valuable, you can cite us as
|
|
104 |
booktitle={Advances in Neural Information Processing Systems},
|
105 |
year={2023}
|
106 |
}
|
107 |
-
```
|
|
|
2 |
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
+
pipeline_tag: fill-mask
|
6 |
inference: false
|
7 |
---
|
8 |
|
9 |
# Monarch Mixer-BERT
|
10 |
|
11 |
+
An 80M checkpoint of M2-BERT, pretrained with sequence length 2048.
|
12 |
+
**This is a BERT-style model that has not been fine-tuned. We recommend fine-tuning it for specific use cases before using it.**
|
13 |
|
14 |
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence.
|
15 |
|
|
|
21 |
|
22 |
You can load this model using Hugging Face `AutoModel`:
|
23 |
```python
|
24 |
+
from transformers import AutoModelForMaskedLM
|
25 |
+
model = AutoModelForMaskedLM.from_pretrained(
|
26 |
"togethercomputer/m2-bert-80M-2k-retrieval",
|
27 |
trust_remote_code=True
|
28 |
)
|
|
|
31 |
You should expect to see a large error message about unused parameters for FlashFFTConv.
|
32 |
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main).
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
## Acknowledgments
|
35 |
|
36 |
Alycia Lee helped with AutoModel support.
|
|
|
45 |
booktitle={Advances in Neural Information Processing Systems},
|
46 |
year={2023}
|
47 |
}
|
48 |
+
```
|